FORMS AND BAER ORDERED *-FIELDS

ΒY

KA HIN LEUNG

Department of Mathematics, National University of Singapore, Singapore, 119260 e-mail: matlkh@nus.edu.sg

ABSTRACT

It is well known that for a quaternion algebra, the anisotropy of its norm form determines if the quaternion algebra is a division algebra. In case of biquaternion algebra, the anisotropy of the associated Albert form (as defined in [LLT]) determines if the biquaternion algebra is a division ring. In these situations, the norm forms and the Albert forms are quadratic forms over the center of the quaternion algebras; and they are strongly related to the algebraic structure of the algebras. As it turns out, there is a natural way to associate a tensor product of quaternion algebras with a form such that when the involution is orthogonal, the algebra is a Baer ordered *-field iff the associated form is anisotropic.

1. Introduction

Let D be a *-field, i.e. a division ring with an involution *. In D, we denote the set of nonzero symmetric elements by S(D, *). A subset P in S(D, *) is called a Baer ordering if (i) $P + P \subset P$, (ii) $1 \in P$ and for any nonzero $x \in D$, $xPx^* \subset P$, (iii) $P \cup (-P) = S(D, *)$. In the literature, there are other types of orderings defined over *-fields; for a reference, see [C₂].

Let F be the center of D and F' be the fixed field of * in F. (D, *) is called trivial if D = F or (D, *) is a standard quaternion algebra. Suppose (D, *) is trivial. If (D, *) admits a Baer ordering P, then $T' = \{\sum x_t x_t^* : x_t \in D\}$ is a preordering on F'. Conversely, if T' is a preordering on F', then as pointed out in [L₂, Chapter 14], a T'-normed semiordering (as defined in [L₂, Definition 14.4]) exists. It is clear from the definition of Baer ordering that any normed T'-semiordering on F' is a Baer ordering on (D, *). Let $T = \{\sum x_t x_t^* : x_t \in F\}$. When D = F, T' = T. Hence (F, *) admits a Baer ordering iff T is a preordering on F'. When $D = \begin{pmatrix} a,b\\ F \end{pmatrix}$ and * is the standard involution, T' = T + T(-a) +

Received December 25, 1997 and in revised form November 4, 1998

T(-b) + T(ab). Hence, T' is a preordering iff T is a preordering and the form $\langle 1, -a, -b, ab \rangle$ is T-anisotropic. Thus, when T is a preordering, the anisotropy of the T-form $\langle 1, -a, -b, ab \rangle$ implies the orderability of (D, *). What about the case when $D = \begin{pmatrix} a, b \\ F \end{pmatrix}$ but * is not standard? For (D, *) to admit a Baer ordering, it is still necessary that T is a preordering. In view of the earlier observation, we may ask the following question.

Does there exist a T-form $\phi(D, *)$ over F' such that (D, *) is Baer ordered iff $\phi(D, *)$ is anisotropic over T?

As we will see, the answer is affirmative when D is a quaternion algebra. Moreover, such a result can be extended to the case when D is a tensor product of quaternion algebras with * satisfying certain conditions. Note that up until now, there is no easy way to determine if (D, *) admits a Baer ordering even when (D, *) is a quaternion algebra with an orthogonal involution. In [Le₂], it is shown that a *-field (D, *) admits a Baer ordering iff (D, *) is Baer formally real. However, it is not easy to determine if (D, *) is Baer formally real in general.

Our investigation on the orderability of quaternion algebras is also motivated by the following longstanding problem raised by Holland [H₁]. Does every formally real *-field admit a Baer ordering? A *-field (D, *) is said to be formally real if $\sum \alpha_i x \alpha_i^* \neq 0$ for any nonzero elements α_i 's in D and $x \in S(D, *)$. By using the results mentioned earlier, we see that the answer is affirmative when (D, *) is trivial. Therefore, the next case to be considered is a quaternion algebra with a nonstandard involution. Thus, it is important to find a necessary and sufficient condition for a quaternion algebra to admit a Baer ordering.

2. Notation and preliminary results

From now on, we fix the following notation. (D, *) is a *-field with center F and [D:F] is finite. For any subset E in D, we denote $E \setminus \{0\}$ by \dot{E} .

To deal with noncommutative *-fields, we often make use of *-valuations. The notion was first introduced by Holland $[H_2]$. The main purpose then was to lift Baer *-orderings from the residue *-fields, see $[H_2, C_1]$. In the papers $[Le_1, Le_2]$, *-valuations are used to study *-fields finite dimensional over their centers as the dimension of the residue *-fields over their centers are usually smaller, and that allows us to apply an induction argument.

A valuation v is said to be a *-valuation if $v(a) = v(a^*)$ for all $a \in D$. As usual, we denote the valuation ring, residue class division ring and value group by R_v, \bar{D}_v and Γ_D respectively. For any element a in R_v , we denote its image in \bar{D}_v by \bar{a} . If E is any subset of D, we denote $\{\bar{a}: a \in E \cap R_v\}$ by \bar{E} and v(E) by Γ_E . When v is a *-valuation, * induces an obvious involution $\bar{*}$ on \bar{D}_v . For any $d \in D$, we define the involution $*_d$ such that $*_d(x) = dx^*d^{-1}$ for all $x \in D$. Clearly, v is also a *-valuation with respect to $*_d$. Therefore, $*_d$ also induces an involution $\bar{*}_d$ on \bar{D}_v such that for $y = \bar{x}$ in \bar{D}_v , $\bar{*}_d(y) = \overline{dx^*d^{-1}}$.

As defined in [Le₁], a Baer ordering P is said to be semicompatible with v if $\{a \in D: n - aa^* \in P \text{ for some } n \in \mathbb{N}\} \subset R_v$. Moreover, there is a finest nontrivial *-valuation v, the order *-valuation of P, semicompatible with P. In general, v is not necessarily compatible with P. The key constraint is that for any $x \in P \cap S(D, *)$, $\{\overline{dx^{-1}}: d \in P \text{ and } v(d) = v(x)\}$ need not be a Baer ordering on $(\overline{D}_v, \overline{*}_d)$. In [Le₂, Corollary 4.3], a sufficient condition is given to ensure that $\{\overline{dx^{-1}}: d \in P \text{ and } v(d) = v(x)\}$ is a Baer ordering. When that condition fails, v is not compatible with P. Nevertheless, it is still possible to find a Baer ordering compatible with a coarsening of v.

PROPOSITION 2.1: Let v be a *-valuation semicompatible with a Baer ordering P on (D, *). Suppose [D : F'] is finite and Γ_D is of finite rank, i.e. Γ_D has only a finite number of convex subgroups. Then there exist a Baer ordering P' and a coarsening v' of v such that P' is compatible with v'. Furthermore, v' can be chosen such that $v'(\dot{D}) \neq v'(\dot{F}')$ if $\Gamma_D \neq \Gamma_{F'}$.

Proof: Let $S(\Gamma_D) = v(S(D, *))$ and $H = \Gamma_{F'} + 2\Gamma_D$. Clearly, H is a subgroup of Γ_D and $S(\Gamma_D)$ is a union of H-cosets in Γ_D . As [D:F'] is finite, $|\Gamma_D/\Gamma_{F'}|$ is also finite. In particular, $|S(\Gamma_D)/\Gamma_{F'}| = k$ is finite. Therefore, there exist $d_1, \ldots, d_k \in S(D, *)$ such that $S(\Gamma_D) = \bigcup_{i=1}^k v(d_i) + H$. (Note that we may assume $d_1 = 1$ and $v(d_i) + H \neq v(d_j) + H$ whenever $i \neq j$.) For each coset $\gamma + 2\Gamma_D \in (\Gamma_{F'} + 2\Gamma_D)/2\Gamma_D$, we fix an element $x_{\gamma} \in F'$ such that $v(x_{\gamma}) \in \gamma + 2\Gamma_D$. Let $X_v = \{x_{\gamma} : \gamma + 2\Gamma_D \in (\Gamma_{F'} + 2\Gamma_D)/2\Gamma_D\}, Y_v = \{d_1, \ldots, d_k\}$ and $A_v = X_v \cdot Y_v$. Clearly, the mapping $\bar{v}: A_v \to S(\Gamma_D)/2\Gamma_D$ defined by $\bar{v}(d) = v(d) + 2\Gamma_D$ is bijective.

If $Y_v = \{1\}$, then $A_v \subset F'$. So, for every $d \in A_v$, $\bar{*}_d = \bar{*}$. On the other hand, we conclude from [Le₁, Corollary 2.6] that \bar{P} is a Baer ordering on $(\bar{D}_v, \bar{*})$. By [Le₁, Proposition 3.3], \bar{P} can be lifted to a Baer ordering compatible with v.

Next, we assume $Y_v \neq \{1\}$. For any $x \in \dot{D}$, we define

$$G(v(x)) = \{ \gamma \in \Gamma_D : |\gamma| < |v(x) + 2\gamma' | \forall \gamma' \in \Gamma_D \}.$$

Let $d \in Y_v \setminus \{1\}$. As Γ_D is of finite rank, there exists $d' \in d\dot{F}'$ such that $\bigcap_{x \in d\dot{F}'} G(v(x)) = G(v(d'))$. We claim that $v(d') \notin \Gamma_{F'} + G(v(d'))$. Otherwise, there is an element x in \dot{F}' such that $v(xd') \in G(v(d'))$. As $d \in Y_v \setminus \{1\}$, $v(xd') \notin C(v(d')) \in C(v(d'))$.

 $\Gamma_{F'}$. So $v(xd') \neq 0$. But by the definition of G(v(xd')), $G(v(xd')) \subsetneq G(v(d'))$. This contradicts our assumption on d'. We have thus proved our claim.

Note that when we define Y_v , we could replace each d_i by $x_i d_i$ whenever $x_i \in \dot{F}'$. So by the above argument, we may choose $x_i \in \dot{F}'$ such that $v(x_i d_i) \notin G(v(x_i d_i))$ for each i. Then, after each d_i is replaced by $x_i d_i$, we may assume $v(d) \notin \Gamma_{F'} + G(v(d))$ for every $d \in Y_v \setminus \{1\}$.

Let $\Delta = \bigcup_{d \in Y_v \setminus \{1\}} G(v(d))$. As $|Y_v|$ is finite, $\Delta = G(v(d_0))$ for some $d_0 \in Y_v \setminus \{1\}$. As argued above, $v(d_0) \notin \Delta + G(v(d_0))$. Thus, $v(d_0) \notin \Gamma_{F'} + \Delta$.

Define $v': \dot{D} \to \Gamma_D/\Delta$ such that for all $x \in \dot{D}$, $v'(x) = v(x) + \Delta$. As $v(d_0) \notin \Gamma_{F'} + \Delta$, $v'(d_0) \notin v'(\dot{F'})$. By [Le₂, Corollary 4.3], $(\bar{D}_{v'}, \bar{*}_d)$ admits a Baer ordering for all $d \in Y_v$. Since for any $x \in A_v$, there exists $d \in Y_v$ such that $\bar{*}_x = \bar{*}_d$, we conclude that $(\bar{D}_{v'}, \bar{*}_d)$ admits a Baer ordering for all $d \in A_v$. For the valuation v', it is clear that the corresponding $A_{v'}$ can be taken as a subset of $Y_{v'}$. Thus by [Le₁, Proposition 3.3] again, we get a Baer ordering compatible with v'.

LEMMA 2.2: Suppose v is compatible with a Baer ordering P on (D, *). Then for any $d \in P$, v is also compatible with the Baer ordering Pd^{-1} on $(D, *_d)$. Here $*_d$ is the involution on D such that $*_d(x) = dx^*d^{-1}$ for all $x \in D$.

Proof: By [Le₁, Lemma 3.1], Pd^{-1} is a Baer ordering on $(D, *_d)$. Clearly, v is also a *-valuation on $(D, *_d)$. Lastly, if $x, y \in Pd^{-1}$ and v(x) > v(y), then v(xd) > v(yd) and $xd, yd \in P$. Since v is compatible with P, $(yd - xd) \in P$. Consequently, $y - x \in Pd^{-1}$.

For the rest of this section, we assume * is an involution on F and F' is the fixed field of * in F. If $F \neq F'$, we fix an element $y \in F'$ such that $F = F'[\sqrt{y}]$ and \sqrt{y} is a skew element in (F, *). Furthermore, we assume $T = \{\sum x_t x_t^* : x_t \in F\}$ is a preordering in F'.

LEMMA 2.3: Let u_1, u_2, \ldots, u_n be elements of F' and $L = F[\sqrt{u_1}, \ldots, \sqrt{u_n}]$. Suppose # is an F'-automorphism of L that extends * and $\#(\sqrt{u_t}) = (-1)^{\alpha_t} \sqrt{u_t}$ for $t = 1, \ldots, n$. Let L' be the fixed field of # in L. Then

$$T(L) := \{ \sum x_t x_t^\# : x_t \in L \}$$

is a preordering in L' iff $\bigotimes_{t=1}^{n} \langle 1, (-1)^{\alpha_t} u_t \rangle$ is *T*-anisotropic. Furthermore, a *T*-form ϕ over F' is T(L)-anisotropic over L' iff $\bigotimes_{t=1}^{n} \langle 1, (-1)^{\alpha_t} u_t \rangle \otimes \phi$ is *T*-anisotropic over F'.

Proof: By using an induction argument, it suffices to prove Lemma 2.3 for the case n = 1. Note that necessity is obvious in both assertions. Let $\phi = \langle v_1, \ldots, v_s \rangle$ be a *T*-form over F'. Suppose $\langle 1, (-1)^{\alpha_1} u_1 \rangle \otimes \phi$ is *T*-anisotropic.

Vol. 116, 2000

5

If u_1 is a square in F, then L = F, # = * and T(L) = T. As $(-1)^{\alpha_1} u_1 \in T$, our lemma is obvious. Thus, we may assume $\sqrt{u_1} \notin F$. If x_{tl} 's and y_{tl} 's are in F and

$$0 = \sum_{t=1}^{s} \sum_{l} (x_{tl} + y_{tl}\sqrt{u_1})(x_{tl}^* + y_{tl}^*(-1)^{\alpha_1}\sqrt{u_1})v_t,$$

then $0 = \sum_{t=1}^{s} \sum_{l} (x_{tl} x_{tl}^* + y_{tl} y_{tl}^* (-1)^{\alpha_1} u_1) v_t$. Therefore, $\langle 1, (-1)^{\alpha_1} u_1 \rangle \otimes \phi$ is *T*-isotropic. This is a contradiction.

By putting $\phi = \langle 1 \rangle$, the calculation above shows that

$$T(L) := \{ \sum x_t x_t^{\#} : x_t \in L \}$$

is a preordering in L' whenever $\langle 1, (-1)^{\alpha_1}u_1 \rangle$ is *T*-anisotropic. Moreover, when T(L) is a preordering, the same calculation shows that ϕ is T(L)-anisotropic.

LEMMA 2.4: Let L be as defined in Lemma 2.3. $[L:F] = 2^n$ if $\bigotimes_{t=1}^n \langle 1, (-1)^{\beta_t} u_t \rangle$ is T-anisotropic for any β_1, \ldots, β_n in $\{0, 1\}$.

Proof: Suppose n = 1. If $L = F[\sqrt{u_1}] = F$, then $u_1 \in F^2 \cap F'$. So, $u_1 \in (F')^2$ or $u_1 \in y(F')^2$. Note that $u_1 \in y(F')^2$ is possible only when $F \neq F'$. In the former case, $\langle 1, -u_1 \rangle$ is *T*-isotropic. In the latter case, $\langle 1, u_1 \rangle$ is *T*-isotropic. This contradicts our assumption that $\langle 1, \pm u_1 \rangle$ are *T*-anisotropic. Hence, [L:F] = 2.

For n > 1, we let $K := F[\sqrt{u_1}, \ldots, \sqrt{u_{n-1}}]$ and # be an automorphism of K that extends * and fixes every $\sqrt{u_t}$ for $t = 1, \ldots, n-1$. By the induction assumption, $[K:F] = 2^{n-1}$. By Lemma 2.3, $T(K) := \{\sum x_t x_t^{\#} : x_t \in K\}$ is a preordering. As $\bigotimes_{t=1}^{n-1} \langle 1, u_t \rangle \otimes \langle 1, \pm u_n \rangle$ is T-anisotropic, $\langle 1, \pm u_n \rangle$ are T(K)-anisotropic by Lemma 2.3. By using the argument for n = 1, we see that $[K(\sqrt{u_n}) : K] = 2$. Hence $[L:F] = 2^n$.

3. Tensor product of quaternion algebras

Let D be a tensor product of quaternion algebras and * be an involution on D. Our first goal is to define a form $\phi(D, *)$ such that (D, *) admits a Baer ordering if $\phi(D, *)$ is anisotropic. Unfortunately, such a form does not always exist when * is of the second kind.

Definition 3.1: Let D be a tensor product of quaternion algebras over a field F. We say an involution * is 'nice' if * is an F/F'-involution and there exist $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in F'$ such that

$$D = \left(\frac{a_1, b_1}{F}\right) \otimes_F \cdots \otimes_F \left(\frac{a_n, b_n}{F}\right).$$

In that case, we define $\phi(D, *) = \bigotimes_{t=1}^n \langle 1, a_t, b_t, -a_t b_t \rangle$.

Note that in Definition 3.1, it is possible that F = F', i.e. * is of the first kind. Clearly, * is 'nice' if * is of the first kind. When D is a quaternion algebra, we conclude from [S, Theorem 11.2] that any involution of the second kind is also 'nice'. However, we do not know if every involution of the second kind is 'nice' when D is not a quaternion algebra. In general, if * is an F/F'-involution and D is a tensor product of quaternion algebras over F, D may not be expressible as a tensor product of *-closed quaternion algebras. For an example, see [CW, Section 4]. Nevertheless, our assumption is weaker than the condition that D is expressible as a tensor product of *-closed quaternion algebras.

As suggested in the case of a standard involution on a quaternion algebra, we should view $\phi(D, *)$ as a form over a preordering. From now on, we set $T = \{\sum x_i x_i^* : x_i \in F\}.$

LEMMA 3.2: Suppose D is a quaternion algebra and T is a preordering on F'. Then as a T-form over F', $\phi(D, *)$ is uniquely determined if * is of the first kind.

Proof: Suppose

$$D = \left(\frac{a,b}{F}\right) = \left(\frac{a',b'}{F}\right).$$

It follows from [L₁, Proposition 2.5] that $\langle 1, a, b, -ab \rangle$ and $\langle 1, a', b', -a'b' \rangle$ are isometric as quadratic forms over F. Therefore, they are also T-isometric.

Note that in general, $\phi(D, *)$ depends very much on the choice of a_t 's and b_t 's when * is of the second kind. So in defining $\phi(D, *)$, we must first fix the choice of a_t 's and b_t 's.

From now on, we fix the following notation. Let D be a tensor product of quaternion algebras over F and * be a 'nice' involution on D. Therefore, there exist $a_1, \ldots, a_n, b_1, \ldots, b_n$ in F' such that

$$D = \left(\frac{a_1, b_1}{F}\right) \otimes_F \cdots \otimes_F \left(\frac{a_n, b_n}{F}\right) \quad \text{and} \quad \phi(D, *) = \bigotimes_{t=1}^n \langle 1, a_t, b_t, -a_t b_t \rangle.$$

When * is of the second kind, we fix an element $y \in F'$ such that $F = F'[\sqrt{y}]$ and \sqrt{y} is skew. For each t = 1, ..., n, we define $D_t = \left(\frac{a_t, b_t}{F}\right)$. We let i_t, j_t, k_t be elements in D_t such that

$$i_t^2 = a_t, \quad j_t^2 = b_t \text{ and } k_t = i_t j_t = -j_t i_t.$$

Clearly, $D_t = F + Fi_t + Fj_t + Fk_t$. As defined earlier, $T = \{\sum x_t x_t^* | x_t \in F\}$.

When we write D as a tensor product of quaternion algebras, it is possible to replace each a_t by ya_t and/or b_t by yb_t . The next result shows that those changes do not concern us in determining the anisotropy of the form $\phi(D, *)$.

LEMMA 3.3: If a_t is replaced by ya_t and/or b_t is replaced by yb_t , then $\phi(D, *)$ is off by a scalar multiple of an element in F'.

Proof: For convenience, we will drop the subscripts. It suffices to show that there exist x_1, x_2, x_3 in F' such that

$$\begin{array}{l} x_1 \cdot \langle 1, ay, b, -aby \rangle \cong_T x_2 \cdot \langle 1, a, by, -aby \rangle \cong_T x_3 \cdot \langle 1, ay, by, -ab \rangle \\ \\ \cong_T \langle 1, a, b, -ab \rangle. \end{array}$$

As $-y \in T$, $\langle 1, ay, b, -aby \rangle \cong_T \langle 1, -a, b, ab \rangle$, $\langle 1, a, by, -aby \rangle \cong_T \langle 1, a, -b, ab \rangle$ and $\langle 1, ay, by, -ab \rangle \cong_T \langle 1, -a, -b, -ab \rangle$. Clearly, we can take $x_1 = b, x_2 = a$ and $x_3 = -ab$.

We are now ready to state our main results.

THEOREM 3.4: Let D and * be as assumed above. If T is a preordering in F' and $\phi(D, *)$ is T-anisotropic, then (D, *) is a Baer ordered *-field.

THEOREM 3.5: Suppose the involution * is not symplectic. Then T is a preordering in F and $\phi(D, *)$ is T-anisotropic iff (D, *) is a Baer ordered *-field.

In proving Theorem 3.4 and Theorem 3.5, we often need to deal with valuations on F'. It is desirable that for a valuation $v: \dot{F}' \to \Gamma_{F'}, v(y), v(a_t)$'s and $v(b_t)$'s satisfy certain conditions.

LEMMA 3.6: Let v be a valuation compatible with T on F'. Then v extends uniquely to F when $F' \neq F$. Furthermore, if we define $\bar{v}: \dot{F}' \to \Gamma_{F'}/2\Gamma_{F'}$ such that for all $x \in \dot{F}', \bar{v}(x) = v(x) + 2\Gamma_{F'}$, then there exist nonnegative integers r, sand elements $a'_1, \ldots, a'_n, b'_1, \ldots, b'_n$ in F' such that

(i)
$$D = \left(\frac{a'_1, b'_1}{F}\right) \otimes_F \cdots \otimes_F \left(\frac{a'_n, b'_n}{F}\right),$$

(ii) $\phi(D, *) = x \cdot \bigotimes_{t=1}^{n} \langle 1, a'_t, b'_t, -a'_t b'_t \rangle$ for some $x \in F'$,

- (iii) $\bar{v}(y) = 0 \text{ or } \bar{v}(y) \notin \langle \bar{v}(a'_1), \bar{v}(b'_1), \dots, \bar{v}(a'_n), \bar{v}(b'_n) \rangle$ if $F \neq F'$,
- (iv) $v(a'_t) = 0$ for t = 1, ..., r + s if $r + s \ge 1$,
- (v) $v(b'_t) = 0$ for t = 1, ..., r if $r \ge 1$,
- (vi) $\bar{v}(b'_{r+1}), \ldots, \bar{v}(b'_n)$ are \mathbb{Z}_2 -independent in Γ_F/Γ_T if $r+1 \leq n$,
- (vii) $\bar{v}(a'_{r+s+1}), \ldots, \bar{v}(a'_n), \bar{v}(b'_{r+1}), \ldots, \bar{v}(b'_n)$ are \mathbb{Z}_2 -independent in Γ_F/Γ_T if $r+s+1 \leq n$.

K. H. LEUNG

Proof: Suppose $F \neq F'$. Clearly, v extends uniquely to F if $v(y) \notin 2\Gamma_{F'}$. If $v(y) \in 2\Gamma_{F'}$, we may assume v(y) = 0. However, \bar{y} is not a square in $\overline{F'}$ as T is compatible with v. Hence, v extends uniquely to F.

Let $H = \langle \bar{v}(a_1), \bar{v}(b_1), \dots, \bar{v}(a_n), \bar{v}(b_n) \rangle$. If $F \neq F'$, $\bar{v}(y) \neq 0$ and $\bar{v}(y) \in H$, then there exists a subgroup H' of index 2 in H such that $H = H' + \langle \bar{v}(y) \rangle$. For each t, we set $u_t = a_t$ if $\bar{v}(a_t) \in H'$ and set $u_t = ya_t$ otherwise. Similarly, we set $w_t = b_t$ if $\bar{v}(b_t) \in H'$ and $w_t = yb_t$ otherwise. Clearly,

$$D = \left(\frac{u_1, w_1}{F}\right) \otimes_F \cdots \otimes_F \left(\frac{u_n, w_n}{F}\right)$$

 $\langle \bar{v}(u_1), \bar{v}(w_1), \ldots, \bar{v}(u_n), \bar{v}(w_n) \rangle = H'$ and H' does not contain $\bar{v}(y)$. By Definition 3.1 and Lemma 3.3, the new form associated becomes $\bigotimes_{t=1}^n \langle 1, u_t, w_t, -u_t w_t \rangle$ which is *T*-isometric to $x \cdot \bigotimes_{t=1}^n \langle 1, a_t, b_t, -a_t b_t \rangle$ for a suitable element $x \in F'$. Without loss of generality, we may assume $u_t = a_t$ and $w_t = b_t$ for all t. In particular, we may assume $\bar{v}(y) = 0$ or $\bar{v}(y) \notin H$.

For convenience, we identify i_t with $1 \otimes 1 \cdots \otimes i_t \otimes 1 \cdots \otimes 1$, j_t with $1 \otimes 1 \cdots \otimes j_t \otimes 1 \cdots \otimes 1$ and k_t with $1 \otimes 1 \cdots \otimes k_t \otimes 1 \cdots \otimes 1$. Thus, we may assume i_t, j_t, k_t are elements in D for $t = 1, \ldots, n$. Let $B = \{\prod_{t=1}^n \alpha_t : \alpha_t = 1, i_t, j_t \text{ or } k_t\}$. Consider now the F'-algebra

$$D' = \left(\frac{a_1, b_1}{F'}\right) \otimes_{F'} \cdots \otimes_{F'} \left(\frac{a_n, b_n}{F'}\right)$$

We claim that there exist a subset $\{i'_t, j'_t, k'_t : t = 1, ..., n\}$ of D' and nonnegative integers r, s such that $a'_t = i'^2_t, b'_t = j'^2_t$ are elements in F' for t = 1, ..., n; and the following conditions hold:

- (a) $\{\alpha \dot{F}' : \alpha \in B\} = \{(\prod_{t=1}^{n} \alpha_t) \dot{F}' : \alpha_t = 1, i'_t, j'_t \text{ or } k'_t\},\$
- (b) $k'_t = i'_t j'_t = -j'_t i'_t$ for t = 1, ..., n,
- (c) $i'_t i'_{t'} = i'_{t'} i'_t, i'_t j'_{t'} = j'_{t'} i'_t$, and $j'_t j'_{t'} = j'_{t'} j'_t$ if $1 \le t' \ne t \le n$,
- (d) $v(a'_t) = 0$ for t = 1, ..., r + s if $r + s \ge 1$,
- (e) $v(b'_t) = 0$ for t = 1, ..., r if $r \ge 1$,
- (f) $\bar{v}(b'_{r+1}), \ldots, \bar{v}(b'_n)$ are \mathbb{Z}_2 -independent in $\Gamma_{F'}/2\Gamma_{F'}$ if $r+1 \leq n$,
- (g) $\bar{v}(a'_{r+s+1}), \ldots, \bar{v}(a'_n), \bar{v}(b'_{r+1}), \ldots, \bar{v}(b'_n)$ are \mathbb{Z}_2 -independent in $\Gamma_{F'}/2\Gamma_{F'}$ if $r+s+1 \le n$.

Before we prove our claim, we need to prove some preliminary results. Let $\mathcal{A} = \{x\dot{F}' : x \in B\}$. Clearly, \mathcal{A} can be regarded as a multiplicative elementary 2-abelian group. As in [TW], we define a nondegenerate map $B_{\mathcal{A}}: \mathcal{A} \times \mathcal{A} \to \{\pm 1\}$ such that

$$B_\mathcal{A}(z_1\dot{F}',z_2\dot{F}')z_1z_2\dot{F}'=z_2z_1\dot{F}' \quad ext{for every } z_1\dot{F}',z_2\dot{F}'\in\mathcal{A}.$$

For any subgroup \mathcal{G} in \mathcal{A} , we define

$$\mathcal{G}^{\perp} = \{ z\dot{F}' \colon B_{\mathcal{A}}(z\dot{F}', z'\dot{F}') = 1 \text{ for all } z'\dot{F}' \in \mathcal{G} \}.$$

Let Δ be the divisible closure of $\Gamma_{F'}$. Note that $\{i_t \dot{F'}, j_t \dot{F'} : t = 1, 2, ..., n\}$ is a basis for the elementary 2-abelian group \mathcal{A} . Therefore, there exists a group homomorphism $w: \mathcal{A} \to \Delta/\Gamma_{F'}$ such that for t = 1, 2, ..., n,

$$w(i_t \dot{F}') = \frac{v(a_t)}{2} + \Gamma_{F'}$$
 and $w(j_t \dot{F}') = \frac{v(b_t)}{2} + \Gamma_{F'}$

We denote ker(w) by \mathcal{K} . Clearly, $\mathcal{K}^{\perp} = \{zF' \in \mathcal{A}: za\dot{F}' = az\dot{F}' \text{ for all } a\dot{F}' \in \mathcal{K}\}.$ There are three possible cases.

CASE (i): $\mathcal{K} = \{\dot{F}'\}$. In this case, we set $i'_t = i_t$ and $j'_t = j_t$ for all t. It is straightforward to check that r = s = 0 and (a)–(g) hold.

CASE (ii): $\mathcal{K} \neq \{\dot{F}'\}$ and $\mathcal{K} = \mathcal{K} \cap \mathcal{K}^{\perp}$. Let $i'_{1}\dot{F}' \in \mathcal{K}$. In \mathcal{K} , there exists a subgroup \mathcal{K}' of index 2 in \mathcal{K} such that $\{\dot{F}', i'_{1}\dot{F}'\} \cdot \mathcal{K}' = \mathcal{K}$. As $B_{\mathcal{A}}$ is nondegenerate, $\mathcal{K}'^{\perp} \supseteq \mathcal{K}^{\perp}$. Let $j'_{t} \in \mathcal{K}'^{\perp} \setminus \mathcal{K}^{\perp}$ and $\mathcal{B} = \{\dot{F}', i'_{1}\dot{F}', j'_{1}\dot{F}', i'_{1}j'_{1}\dot{F}'\}$. Clearly, $\mathcal{B} \cap \mathcal{B}^{\perp} = \{\dot{F}'\}, \ \mathcal{A} = \mathcal{B} \cdot \mathcal{B}^{\perp}$ and $w(\mathcal{B}) + w(\mathcal{B}^{\perp}) = w(\mathcal{A})$. Moreover, as $\mathcal{K}' \subset \mathcal{B}^{\perp}$ and $|w(\mathcal{A})| = \frac{|\mathcal{B}|}{2} \cdot \frac{|\mathcal{B}^{\perp}|}{|\mathcal{K}'|}, w(\mathcal{B}) \not\subset w(\mathcal{B}^{\perp})$. Hence, $w(\mathcal{B}) \cap w(\mathcal{B}^{\perp}) = \{\Gamma_{F'}\}$.

CASE (iii): $\mathcal{K} \setminus (\mathcal{K} \cap \mathcal{K}^{\perp}) \neq \emptyset$. Let $i'_1 \in \mathcal{K} \setminus \mathcal{K}^{\perp}$. As $i'_1 \dot{F}' \notin \mathcal{K} \cap \mathcal{K}^{\perp}$, there exists $j'_1 \dot{F}' \in \mathcal{K}$ such that $i'_1 j'_1 = -j'_1 i'_1$. Let

$$\mathcal{B} = \{\dot{F}', \dot{i}_1'\dot{F}', \dot{j}_1'\dot{F}', \dot{i}_1'j_1'\dot{F}'\}.$$

Clearly, $w(\mathcal{B}) = \{\Gamma_{F'}\}$ and $\mathcal{B} \cap \mathcal{B}^{\perp} = \{1\}$. As $B_{\mathcal{A}}$ is nondegenerate, $\mathcal{A} = \mathcal{B} \cdot \mathcal{B}^{\perp}$.

We now prove our claim by induction. Suppose n = 1. Clearly, $\{i'_1, j'_1, i'_1 j'_1\}$ defined earlier satisfy (a)–(g). In fact, r = s = 0 for Case (i); r = 0 and s = 1 for Case (ii); and r = 1, s = 0 for Case (iii).

Next, we assume n > 1. As before, we simply take r = s = 0 when $\mathcal{K} = \{\dot{F}'\}$. If we are in Case (ii) or Case (iii), we let \mathcal{B} be as defined in the previous argument. By [TW, Lemma 2.5], we see that

$$D' \cong \left(rac{a_1', b_1'}{F'}
ight) \otimes_{F'} F'[\mathcal{B}^{\perp}].$$

We can thus apply induction on $F'[\mathcal{B}^{\perp}]$ to complete the proof of our claim. Note that r = 0 and $s \ge 1$ if Case (ii) happens; and $r \ge 1$ if Case (iii) happens.

Vol. 116, 2000

Lastly, we show (i)-(vii) are satisfied. By (a), we see that

$$D = \left(\frac{a_1', b_1'}{F}\right) \otimes_F \cdots \otimes_F \left(\frac{a_n', b_n'}{F}\right) \quad \text{and} \quad H = \langle \bar{v}(a_1'), \bar{v}(b_1'), \dots, \bar{v}(a_n'), \bar{v}(b_n') \rangle.$$

Therefore, (i) and (iii) hold. Observe that

$$\bigotimes_{t=1}^{n} \langle 1, a_t, b_t, -a_t b_t \rangle = \bigotimes_{t=1}^{n} \langle 1, i_t^2, j_t^2, k_t^2 \rangle$$

and

$$\bigotimes_{t=1}^{n} \langle 1, {i'}_{t}^{2}, {j'}_{t}^{2}, {k'}_{t}^{2} \rangle = \bigotimes_{t=1}^{n} \langle 1, a'_{t}, b'_{t}, -a'_{t}b'_{t} \rangle.$$

Thus (ii) follows from (a). (iv)-(v) follow easily from (d) and (e). Lastly, observe that $\Gamma_T = 2\Gamma_F = 2\Gamma_{F'} \cup (v(y) + 2\Gamma_{F'})$. Hence, (vi) and (vii) follow from (f), (g) and (iii).

Definition 3.7: Suppose ϕ_t is a T form for t = 1, 2, ..., n. We define

$$\otimes_{t=k}^{k'} \phi_t = \langle 1 \rangle$$
 whenever $k > k'$.

Recall that if v is a valuation compatible with a preordering T on F', $T_v := T \cdot (1 + M_v)$ is a preordering fully compatible with v on F'. For more details, we refer the reader to [L₂, Chapter 3].

LEMMA 3.8: Let v be a valuation compatible with T on F'. Suppose a_t 's and b_t 's satisfy the conditions (iii)-(vii) in Lemma 3.6.

(1)
$$\bigotimes_{t=1}^{n} \langle 1, a_t, b_t, -a_t b_t \rangle$$
 is T^v -anisotropic iff for any $\alpha_{r+1}, \ldots, \alpha_{r+s} \in \{0, 1\}$,

$$\bigotimes_{t=1}^{r} \langle 1, \bar{a}_t, \bar{b}_t, -\bar{a}_t \bar{b}_t \rangle \otimes \bigotimes_{t=r+1}^{r+s} \langle 1, (-1)^{\alpha_t} \bar{a}_t \rangle \text{ is } \bar{T}\text{-anisotropic}$$

(2) Suppose $\phi(D, *) = \bigotimes_{t=1}^{n} \langle 1, a_t, b_t, -a_t b_t \rangle$ is *T*-anisotropic. For $t = 1, \ldots, n$, D_t is a division ring and v has an extension to D_t . (Recall that $D_t = \left(\frac{a_t, b_t}{F}\right)$.) Furthermore,

$$\bar{D}_t = \begin{cases} \left(\frac{\bar{a}_{t}, b_t}{F}\right) & \text{if } 1 \le t \le r, \\ \bar{F}[\bar{i}_t] & \text{if } r+1 \le t \le r+s, \\ \bar{F} & \text{if } r+s+1 \le t \le n. \end{cases}$$

Proof: (1) By condition (iii), we see that

$$\overline{v}(a_{r+s+1}),\ldots,\overline{v}(a_n),\overline{v}(b_{r+1}),\ldots,\overline{v}(b_n)$$

are \mathbb{Z}_2 -independent in $\Gamma_{F'}/\Gamma_T$. So (1) follows from [L₂, Theorem 4.6].

(2) We first show that D_t is a division ring. Let D'_t be the F'-algebra $\left(\frac{a_t, b_t}{F'}\right)$ in D_t . Since $\langle 1, a_t, b_t, -a_t b_t \rangle$ is T-anisotropic, $\langle a_t, b_t, -a_t b_t \rangle$ is anisotropic as a quadratic form over F'. Hence by $[L_1$, Theorem 2.7], D'_t is a division ring. We are done if F = F'. Otherwise, we may view D_t as the quotient ring $D'_t[x]/(x^2 - y)D'_t[x]$ where x is an indeterminate that commutes with every element in D'_t . Obviously, $(x^2 - y)D'_t[x]$ is a two-sided ideal. As stated in $[Co, p. 532], D'_t[x]/(x^2 - y)D'_t[x]$ is a division ring if it does not have any zero divisor. By another result stated in $[Co, p. 534], D'_t[x]/(x^2 - y)D'_t[x]$ has no zero divisor if the equation $u^2 = y$ has no root in D'_t . Therefore, D_t is a division ring if the equation $u^2 = y$ has no root in D'_t . Suppose $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in F'$ and $(\alpha_1 + \alpha_2 i_t + \alpha_3 j_t + \alpha_4 k_t)^2 = y$. Then it is easy to see that $\alpha_1^2 + \alpha_2^2 a_t + \alpha_3^2 b_t - \alpha_4^2 a_t b_t = y$. As $-y \in T$, $\langle 1, a_t, b_t, -a_t b_t \rangle$ is then T-isotropic. This is impossible. Therefore, D_t is a division ring.

Suppose $r+s+1 \leq t \leq n$. Then $v(a_t)+2\Gamma_F$ and $v(b_t)+2\Gamma_F$ are \mathbb{Z}_2 -independent in $\Gamma_F/2\Gamma_F$. By [TW, Proposition 3.5], v extends to a *-valuation totally ramified over F.

If $r+1 \leq t \leq r+s$, then $v(a_t) = 0$ and $v(b_t) \notin 2\Gamma_F$. By (1), $\langle 1, \pm \bar{a}_t \rangle$ are \bar{T} anisotropic. Since $\bar{T} = \{\sum x_t x_t^{\bar{x}} : x_t \in \bar{F}\}$, we can apply Lemma 2.4 to conclude that $\bar{a}_t \notin \bar{F}^2$. By an argument used in the proof of [CW, Theorem 3.9], we see that v extends to a valuation on D_t . Furthermore, the residue *-field is $\bar{F}[\bar{i}_t]$.

If $1 \leq t \leq r$, then $v(a_t) = v(b_t) = 0$. As $\langle 1, a_t, b_t, -a_t b_t \rangle$ is T^v -anisotropic, $\langle 1, \bar{a}_t, \bar{b}_t, -\bar{a}_t \bar{b}_t \rangle$ is \bar{T} -anisotropic. By an earlier argument, we see that $\left(\frac{\bar{a}_t, \bar{b}_t}{\bar{F}}\right)$ is a division ring. Apply an argument used in the proof of [CW, Theorem 3.8]; we see that v extends to a valuation totally unramified over F on D_t and $\overline{D_t} = \left(\frac{\bar{a}_t, \bar{b}_t}{\bar{F}}\right)$.

Proof of Theorem 3.4: Suppose T is a preordering and

$$\phi(D,*) = \bigotimes_{t=1}^n \langle 1, a_t, b_t, -a_t b_t \rangle$$

is T-anisotropic. Apply $[L_2$, Isotropy Principle 18.2] to the form

$$\bigotimes_{t=1}^n \langle 1, a_t, b_t, -a_t b_t \rangle;$$

we get a valuation $v: \dot{F}' \to \Gamma_{F'}$ compatible with T such that

(I) either $v(a_t) + \Gamma_T \neq \Gamma_T$ or $v(b_t) + \Gamma_T \neq \Gamma_T$ for some t = 1, ..., n.

(II) $\bigotimes_{t=1}^{n} \langle 1, a_t, b_t, -a_t b_t \rangle$ is T^v -anisotropic.

By Lemma 3.6, we may assume v is defined on F even when $F \neq F'$. Since v is compatible with T, $\overline{T} = \{\sum x_t x_t^{\overline{*}} : x_t \in \overline{F}\}$ is a preordering on $\overline{F'}$. This fact will be used repeatedly in the subsequent argument. Furthermore, in view of Lemma 3.6, we may assume a_t 's and b_t 's satisfy the conditions (iii)–(vii) there.

Our strategy is to prove by induction on n that

(i) D is a division ring and v extends to a valuation \tilde{v} on D.

(ii) (D, *) admits a Baer ordering.

By Lemma 3.6 and [CW, Lemma 1.8], the extension \tilde{v} obtained in (i) is in fact a *-valuation on D. By [Le₁, Proposition 3.3], it suffices to show (i) and that $(\tilde{D}_{\tilde{v}}, \bar{*}_d)$ is a Baer ordered *-field for every $d \in S(D, *)$.

Suppose n = 1. By Lemma 3.8 (2), D is a division ring and v extends to a valuation \tilde{v} on D. Recall that r, s are as defined in Lemma 3.6. By condition (I), we see that r = 0. When s = 0, the residue *-field is $(\bar{F}, \bar{*})$. As \bar{T} is a preordering, $(\bar{F}, \bar{*})$ admits a Baer ordering. For all $d \in S(D, *)$, $\bar{*}_d = \bar{*}$, so $(\bar{F}, \bar{*}_d)$ admits a Baer ordering. In case s = 1, the residue *-field is $(\bar{F}[\bar{i}_1], \bar{*})$. For any $d \in S(D, *)$, $\bar{*}_d|_{\bar{F}} = \bar{*}|_{\bar{F}}$. As $\bar{T} = \{\sum x_t x_t^* : x_t \in \bar{F}\}$ and $\langle 1, \pm \bar{a}_1 \rangle$ are \bar{T} -anisotropic, we conclude from Lemma 2.3 that $(\bar{F}[\bar{i}_1], \bar{*}_d)$ admits a Baer ordering.

Suppose n > 1. By Lemma 3.8 (2) and [M, Theorem 1], we see that D is a division ring and v has a unique extension to D if

$$E := \left(\frac{\bar{a}_1, \bar{b}_1}{\bar{F}}\right) \otimes_{\bar{F}} \cdots \otimes_{\bar{F}} \left(\frac{\bar{a}_r, \bar{b}_r}{\bar{F}}\right) \otimes_{\bar{F}} \bar{F}[\bar{i}_{r+1}] \otimes_{\bar{F}} \cdots \otimes_{\bar{F}} \bar{F}[\bar{i}_{r+s}]$$

is a division ring. Here, it is understood that

$$ar{F}[ar{i}_{r+1}]\otimes_{ar{F}}\cdots\otimes_{ar{F}}ar{F}[ar{i}_{r+s}]=ar{F} \quad ext{if }s=0$$

and

$$\left(\frac{\bar{a}_1,\bar{b}_1}{\bar{F}}\right)\otimes_{\bar{F}}\cdots\otimes_{\bar{F}}\left(\frac{\bar{a}_r,\bar{b}_r}{\bar{F}}\right)=\bar{F}\quad\text{if }r=0.$$

By Lemma 3.8 (1) and Lemma 2.3, we see that $\bar{F}[\bar{i}_{r+1},\ldots,\bar{i}_{r+s}]$ is a field of degree 2^s over \bar{F} . In particular, this shows that $\bar{F}[\bar{i}_{r+1}] \otimes_{\bar{F}} \cdots \otimes_{\bar{F}} \bar{F}[\bar{i}_{r+s}]$ can be identified as the field $\bar{F}[\bar{i}_{r+1},\ldots,\bar{i}_{r+s}]$ which we denote by K. Clearly, we may view

$$E = \left(\frac{\bar{a}_1, \bar{b}_1}{K}\right) \otimes_K \cdots \otimes_K \left(\frac{\bar{a}_r, \bar{b}_r}{K}\right).$$

For any involution # on K with $\#|_{\bar{F}} = \bar{*}|_{\bar{F}}$, we set $T(\#) = \{\sum x_{\alpha} x_{\alpha}^{\#} : x_{\alpha} \in K\}$. By Lemma 3.8 (1) and Lemma 2.3, T(#) is a preordering and

$$\bigotimes_{t=1}^r \langle 1, ar{a}_t, ar{b}_t, -ar{a}_t ar{b}_t
angle$$

is T(#)-anisotropic.

By (I), we see that r < n. So if we set $\# = \bar{*}$, then we can apply an induction assumption to see that $(E, \bar{*})$ is a Baer ordered *-field. (Clearly, $\bar{*}$ is still 'nice' on E.) This proves that v extends to a valuation \tilde{v} on D. Furthermore, for any $d \in S(D, *), \ \bar{*}_d|_{\bar{F}} = \bar{*}|_{\bar{F}}$. So if we set $\# = \bar{*}_d$, we may also apply induction to conclude that $(E, \bar{*}_d)$ is a Baer ordered *-field. By our earlier remark, we see that D is a Baer ordered *-field.

To prove Theorem 3.5, we assume that P is a Baer ordering on (D, *). First, we claim that we may assume all i_t 's and j_t 's are symmetric. For $t = 1, \ldots, n$, we let $\#_t$ be the F/F'-involution on $\left(\frac{a_t, b_t}{F}\right)$ that fixes i_t and j_t . Note that such involution exists because $a_t, b_t \in F'$ for $t = 1, \ldots, n$. As * is not symplectic and $*|_F = (\#_1 \otimes \#_2 \cdots \otimes \#_n)|_F$, * is similar to $\#_1 \otimes \#_2 \cdots \otimes \#_n$. By Lemma 2.2, (D, *) admits a Baer ordering iff (D, #) admits a Baer ordering. Hence, we may assume * = #. This proves our claim.

As defined in [Le₁], there is a finest valuation v_P , the order *-valuation of P, that is semicompatible with P. Suppose $v_P(\dot{D}) = v_P(\dot{F'})$. Then we may assume $v_P(i_t) = v_P(j_t) = 0$ for all t. Hence, the residue division ring is a tensor product of quaternion algebras over \bar{F} . By [Le₁, Corollary 2.11], the residue division ring must then be a quaternion algebra whereas the induced involution must be the standard involution. This is impossible as \bar{i}_t, \bar{j}_t are symmetric elements which are not central in the residue division ring. Therefore, we conclude that $v_P(\dot{D}) \neq v_P(\dot{F'})$.

Unfortunately, v_P may not be compatible with P. By Proposition 2.1, there exists a coarsening $v : \dot{D} \to \Gamma_D$ of v_P such that $\Gamma_D \neq \Gamma_{F'}$ and v is compatible with a Baer ordering P' when F is finitely generated over \mathbb{Q} . Thus, we first assume F is finitely generated over \mathbb{Q} . As before, we may also assume conditions (iii)–(vii) of Lemma 3.6 hold. Let r, s be as defined in Lemma 3.6. To prove Theorem 3.5, it suffices to show that $\bigotimes_{t=1}^n \langle 1, a_t, b_t, -a_t b_t \rangle$ is T^v -anisotropic. In view of Lemma 3.8 (1), we only need to show that for any $\alpha_{r+1}, \ldots, \alpha_{r+s}$ in $\{0, 1\}$,

$$\phi' := \bigotimes_{t=1}^{r} \langle 1, \bar{a}_t, \bar{b}_t, -\bar{a}_t \bar{b}_t \rangle \otimes \bigotimes_{t=r+1}^{r+s} \langle 1, (-1)^{\alpha_t} \bar{a}_t \rangle$$

is \bar{T} -anisotropic. As before, it is understood that $\bigotimes_{t=1}^{r} \langle 1, \bar{a}_t, \bar{b}_t, -\bar{a}_t \bar{b}_t \rangle = \langle 1 \rangle$ when r = 0 and $\bigotimes_{t=r+1}^{r+s} \langle 1, (-1)^{\alpha_t} \bar{a}_t \rangle = \langle 1 \rangle$ when s = 0.

Recall that in the proof of Theorem 3.4, we have shown that

$$\bar{D}_{v} = \left(\frac{\bar{a}_{1}, \bar{b}_{1}}{K}\right) \otimes_{K} \cdots \otimes_{K} \left(\frac{\bar{a}_{r}, \bar{b}_{r}}{K}\right)$$

where $K = \overline{F}[\overline{i}_{r+1}, \dots, \overline{i}_{r+s}]$. Again, it is understood that $K = \overline{F}$ if s = 0 and $\overline{D}_v = K$ if r = 0.

LEMMA 3.9: Let r and ϕ' be as defined above.

- (i) If r = n, * is of the second kind, $\overline{F} = \overline{F'}$ and $\overline{*}$ is of the first kind.
- (ii) If $r \neq n$, then $\bigotimes_{t=r+1}^{r+s} \langle 1, (-1)^{\alpha_t} \bar{a}_t \rangle$ is \bar{T} -anisotropic. In particular, ϕ' is \bar{T} -anisotropic if r = 0.

Proof: Since $[D:F] = [\hat{D}_v:K]$, we conclude that $K = \bar{F}$ and $\Gamma_D = \Gamma_F$. However, as $\Gamma_D \neq \Gamma_{F'}$, * must be of the second kind and $K = \bar{F} = \overline{F'}$. Hence, $\bar{*}$ is of the first kind. This proves (i).

Observe that for $t = r + 1, \ldots, r + s$, there exists $d_t \in \{1, j_t\}$ such that $d_t i_t = (-1)^{\alpha_t} i_t d_t$. Set $d = d_{r+1} \cdots d_{r+s}$ if $s \neq 0$. Otherwise, set d = 1. Clearly, $d \in S(D, *)$. In \bar{D}_v , $\bar{*}_d$ fixes \bar{i}_t and \bar{j}_t for $t = 1, \ldots, r$. Therefore, $\bar{*}_d$ is either orthogonal or is of the second kind on \bar{D}_v . As v is compatible with P', $(\bar{D}_v, \bar{*}_d)$ admits a Baer ordering. In particular, $T(d) = \{\sum x_\alpha x_\alpha^{\bar{*}_d} : x_\alpha \in K\}$ is a preordering. By Lemma 2.3, $\bigotimes_{t=r+1}^{r+s} \langle 1, (-1)^{\alpha_t} \bar{a}_t \rangle$ is \bar{T} -anisotropic as $\bar{T} = \{\sum x_t x_t^{\bar{*}} : x_t \in \bar{F}\}$.

Proof of Theorem 3.5: We first assume F is finitely generated over \mathbb{Q} . This allows us to use the results we have just proved. We shall prove Theorem 3.5 by induction. Suppose n = 1. If r = 0, then by Lemma 3.9 (ii), we see that ϕ' is \overline{T} -anisotropic. So $\phi(D, *)$ is T-anisotropic. Note that r = 0 when * is orthogonal as by assumption of v, $\Gamma_D \neq \Gamma_F$. If r = 1, we conclude from Lemma 3.9 (i) that $\overline{D}_v = \left(\frac{\overline{a}_{1,\overline{b}_1}}{\overline{F'}}\right)$ and $\overline{*}$ is orthogonal. Since $\overline{P'}$ is a Baer ordering on $(\overline{D}_v, \overline{*})$ and $\overline{*}$ is orthogonal, our previous argument shows that $\langle 1, \overline{a}_1, \overline{b}_1, -\overline{a}_1\overline{b}_1 \rangle$ is T_1 -anisotropic where $T_1 = \{\sum x_{\alpha}^2 : x_{\alpha} \in \overline{F'}\}$. By Lemma 3.6 (iii), we see that $T_1 = \overline{T}$. So $\langle 1, \overline{a}_1, \overline{b}_1, -\overline{a}_1\overline{b}_1 \rangle$ is \overline{T} -anisotropic and hence $\phi(D, *)$ is T-anisotropic. This proves Theorem 3.5 for n = 1.

Now assume n > 1. By Lemma 3.9 (ii) again, we may assume $0 < r \le n$. Let d and T(d) be as defined in the proof of Lemma 3.9. Recall that $\bar{*}_d$ is 'nice' and $(\bar{D}_v, \bar{*}_d)$ admits a Baer ordering. If r < n, we may apply an induction argument

Vol. 116, 2000

to conclude that

 $\bigotimes_{t=1}^r \langle 1, \bar{a}_t, \bar{b}_t, -\bar{a}_t \bar{b}_t \rangle$

is T(d)-anisotropic. By Lemma 2.3, ϕ' is then \overline{T} -anisotropic. So again, $\phi(D, *)$ is T-anisotropic. Since $\Gamma_D \neq \Gamma_F$, r < n when * is orthogonal. Hence, $\phi(D, *)$ is T-anisotropic when * is orthogonal. Finally, we consider the case r = n. As before, we see that $\overline{*}$ must be orthogonal. By using a similar argument as in case n = 1, we conclude that $\phi' = \phi(\overline{D}_v, \overline{*})$ is \overline{T} -anisotropic. So $\phi(D, *)$ is then T-anisotropic.

Lastly, we remove the condition that F is finitely generated over Q. Suppose $\phi(D, *) = \langle z_1, \ldots, z_l \rangle$ is T-isotropic. Then

$$\sum (\sum u_{lphaeta} u^*_{lphaeta}) z_lpha = 0$$

for some $u_{\alpha\beta}$'s in F. Let L be the field obtained by adjoining a_i 's, b_i 's, $u_{\alpha\beta}$'s and $u_{\alpha\beta}^*$'s to \mathbb{Q} . Let

$$E:=\left(\frac{a_1,b_1}{L}\right)\otimes_L\cdots\otimes_L\left(\frac{a_n,b_n}{L}\right).$$

Clearly, E is *-closed and $P \cap E$ is a Baer ordering on $(E, *|_E)$. As L is finitely generated over \mathbb{Q} , our previous argument shows that $\phi(E, *) = \langle z_1, \ldots, z_l \rangle$ is T''anisotropic where $T'' := \{\sum x_{\gamma} x_{\gamma}^* : x_{\gamma} \in L\}$. This contradicts our assumption that $\sum (\sum u_{\alpha\beta} u_{\alpha\beta}^*) z_{\alpha} = 0$. Hence we conclude that $\phi(D, *)$ is T-anisotropic.

Note that in the proof of Theorem 3.5, if $r + s \neq n$, $\phi(D, *)$ is *T*-anisotropic even when * is symplectic. This follows easily by considering the involution $\#_1 \otimes \#_2 \otimes \cdots \#_{n-1} \otimes *_n$ where $*_n$ is the standard involution. However, the following example shows that $\phi(D, *)$ need not be *T*-anisotropic in general if * is symplectic.

Example: Let $F = \mathbb{Q}(x, y, z)$ where x, y, z are indeterminates. Obviously, F is formally real and $T := \{\sum t_i^2 : t_i \in F\}$ is a preordering in F. Let $v: \dot{F} \to \mathbb{Z} \times \mathbb{Z}$ be the real valuation such that v(x) = (0,0), v(y) = (1,0) and v(z) = (0,1). Set $a_1 = -(1+x), b_1 = y, a_2 = x$ and $b_2 = z$. With respect to v, it is easy to see that $\langle 1, \pm \bar{a}_1 \rangle$ and $\langle 1, \pm \bar{a}_2 \rangle$ are \bar{T} -anisotropic. Therefore,

$$\langle 1, a_1, b_1, -a_1b_1 \rangle$$
 and $\langle 1, a_2, b_2, -a_2b_2 \rangle$

are T^{v} -anisotropic. Thus, for t = 1, 2, $D_{t} = \left(\frac{a_{t}, b_{t}}{F}\right)$ is a quaternion algebra. By Lemma 3.8, we see that v can be extended to D_{1} and D_{2} . Moreover, the residue

K. H. LEUNG

fields are respectively $\mathbb{Q}[\sqrt{\overline{a_1}}]$ and $\mathbb{Q}[\sqrt{\overline{a_2}}]$. As $\mathbb{Q}[\sqrt{\overline{a_1}}] \otimes \mathbb{Q}[\sqrt{\overline{a_2}}]$ is a field, we can apply Morandi's result to conclude that $D := D_1 \otimes D_2$ is a division ring and v extends to a valuation on D. For convenience, we also denote the extension by v.

Suppose * is the symplectic involution such that i_1, j_1 are skew and i_2, j_2 are symmetric. As * is of the first kind, v is a *-valuation. Let Y_v be as defined in the proof of Proposition 2.1. It is not difficult to see that Y_v can be taken to be $\{1, j_2, i_1k_2, j_1k_2\}$. To see that (D, *) admits a Baer ordering compatible with v, it suffices to show $(\overline{D}_v, \overline{*}_d)$ admits a Baer ordering for every $d \in Y_v$.

By our earlier calculation, $\overline{D}_v = \mathbb{Q}[\overline{i}_1, \overline{i}_2]$. As \overline{D}_v is now a field, $(\overline{D}_v, \overline{*}_d)$ admits a Baer ordering if $\{\sum z_{\alpha} z_{\alpha}^{\bar{*}_{\alpha}} : z_{\alpha} \in \bar{D}_{\nu}\}$ is a preordering. By Lemma 2.3, it suffices to check if the forms

$$\langle 1, (1+ar{x})
angle \otimes \langle 1, \pm ar{x}
angle \quad ext{and} \quad \langle 1, \pm (1+ar{x})
angle \otimes \langle 1, -ar{x}
angle$$

are \bar{T} -anisotropic. (Note that the first two forms correspond to $d = 1, j_2$ and the second two forms correspond to $d = i_1k_2$ and j_1k_2 .) To prove that, we need only to show that there exist three orderings P_1, P_2, P_3 on $\mathbb{Q}(\bar{x})$ such that $\{-\bar{x}, (1+\bar{x})\} \subset P_1, \{-\bar{x}, -(1+\bar{x})\} \subset P_2 \text{ and } \{\bar{x}, (1+\bar{x})\} \subset P_3.$ The existence of P_3 is obvious. For the construction of P_1 and P_2 , we choose real numbers t_1, t_2 which are transcendental over \mathbb{Q} and $t_2 < -1 < t_1 < 0$. Define isomorphism $f_i: \mathbb{Q}(\bar{x}) \to \mathbb{R}$ such that $f_i(\bar{x}) = t_i$ for i = 1, 2. It is then clear that $P_1 = t_i$ $f_1^{-1}(\{x \in \mathbb{R} | x \ge 0\})$ and $P_2 = f_2^{-1}(\{x \in \mathbb{R} | x \ge 0\})$ are the required orderings. Note that $\langle 1, a_1, a_2 \rangle$ is *T*-isotropic. Therefore,

e that
$$\langle 1, a_1, a_2 \rangle$$
 is *I*-isotropic. Therefore,

$$\langle 1,a_1,b_1,-a_1b_1
angle\otimes \langle 1,a_2,b_2,-a_2b_2
angle$$

is also T-isotropic. This shows that Theorem 3.5 is no longer true if * is symplectic. However, it is not difficult to see that in our example,

 $\langle 1, a_1, b_1, -a_1 b_1 \rangle \otimes \langle 1, -a_2, -b_2, a_2 b_2 \rangle \quad \text{and} \quad \langle 1, -a_1, -b_1, a_1 b_1 \rangle \otimes \langle 1, a_2, b_2, -a_2 b_2 \rangle$ are T^{ν} -anisotropic. In fact, by modifying the proof of Theorem 3.5, it is possible to prove the following:

THEOREM 3.10: Let D be as defined before. Suppose n > 1 and * is a symplectic involution. Then (D, *) admits a Baer ordering iff T is a preordering in F and there exists a valuation v compatible with T on F' such that for t = 1, ..., n, $\bigotimes_{l \neq t} \langle 1, a_l, b_l, -a_l b_l \rangle \otimes \langle 1, -a_t, -b_t, a_t b_t \rangle$ is T^v -anisotropic.

In concluding this section, we state an easy corollary of Theorem 3.5 on SAP fields. For a quadratic form characterization of SAP fields, we refer the reader to [P, Theorem 9.1].

COROLLARY 3.11: Suppose F is a SAP field and * is an involution of the first kind. Then (D, *) does not admit a Baer ordering unless n = 1 and * is the standard involution.

4. A possible counter example

As we have mentioned before, one of our motivations in our study of Baer ordered quaternion algebras is to determine if every formally real *-field admits a Baer orderings. Let

$$D = \left(rac{a,b}{F}
ight) \quad ext{and} \quad T = \{\sum x_t^2 \colon x_t \in F\}.$$

In D, we define * to be the orthogonal involution that fixes i, j. It can be shown that (D, *) is formally real iff

$$ab(x^2a + y^2b) \neq ab + t_1 + t_2(x^2a + y^2b)$$
 and $0 \neq ab + t_1 + t_2(x^2a + y^2b)$

for any $x, y \in F$ and $t_1, t_2 \in T$. Hence, (D, *) is formally real iff

$$ab \neq t_1 + (t_2x^2 + y^2b^2)a + (t_2y^2 + x^2a^2)b$$

and

$$0 \neq t_1 + (t_2 x^2 + y^2 b^2)a + (t_2 y^2 + x^2 a^2)b.$$

We conjecture that the above condition is not equivalent to the condition that $\langle 1, a, b-ab \rangle$ is *T*-anisotropic. To construct a possible counter example, we propose the following.

A POSSIBLE COUNTER EXAMPLE. Let $x_1, \ldots, x_r, y_1, \ldots, y_s, z_1, \ldots, z_t, a, b$ be indeterminates. Let $K = \mathbb{Q}(x_1, \ldots, x_r, y_1, \ldots, y_s, z_1, \ldots, z_t, a, b)$ and $F = K[\sqrt{u}]$ where

$$u = ab - (x_1^2 + \dots + x_r^2) - a(y_1^2 + \dots + y_s^2) - b(z_1^2 + \dots + z_t^2).$$

Let $D = \begin{pmatrix} a,b \\ F \end{pmatrix}$ and * be the orthogonal involution that fixes i, j. We first show that D is a division ring.

Let $T(K) = \{\sum \alpha_t^2 : \alpha_t \in K\}$. Observe that $\langle 1, a, b, -ab \rangle$ is T(K)-anisotropic as there exists a real valuation $v : \dot{K} \to \mathbb{Z} \times \mathbb{Z}$ such that v(a) = (1,0), v(b) = (0,1)and $v(x_i) = 0$ for all *i*. By Lemma 3.8, we see that $\left(\frac{a,b}{K}\right)$ is a division ring. As in the proof of Lemma 3.8, *D* is a division ring if we show that $z^2 \neq u$ for any $z \in \left(\frac{a,b}{K}\right)$. Suppose $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in K$ and $(\alpha_1 + \alpha_2 i + \alpha_3 j + \alpha_4 k)^2 = u$. Then $\alpha_1^2 + \alpha_2^2 a + \alpha_3^2 b - \alpha_4^2 a b = ab - (x_1^2 + \dots + x_r^2) - a(y_1^2 + \dots + y_s^2) - b(z_1^2 + \dots + z_t^2)$. It follows that (1, a, b, -ab) is then T(K)-isotropic. This is impossible. Therefore, D is a division ring.

Note that F is formally real and $T = \{\sum x_t^2 : x_t \in F\}$ is a preordering. Clearly, $\langle 1, a, b, -ab \rangle$ is T-isotropic even though $\langle 1, a, b, -ab \rangle$ is T(K)-anisotropic. By Theorem 3.4, (D, *) does not admit a Baer ordering.

Clearly, we may order K such that a, b are positive and

$$x_1,\ldots,x_r,y_1,\ldots,y_s,z_1,\ldots,z_t$$

are infinitesimally small compared with any element in $\mathbb{Q}(a,b)$. In that case u is also positive. Obviously, this ordering can be extended to F. In particular, $\langle 1, a, b \rangle$ is *T*-anisotropic. Therefore, (D, *) is formally real if

$$ab \neq t_1 + (t_2x^2 + y^2b^2)a + (t_2y^2 + x^2a^2)b$$

for any $x, y \in F$ and $t_1, t_2 \in T$. Apparently, it is different from the condition that $\langle 1, a, b, -ab \rangle$ is *T*-isotropic. So it is reasonable to believe (D, *) is a possible counter example. Moreover, our example is generic in the sense that if there exists a formally real quaternion algebra which does not admit a Baer ordering, then our constructed example is one of them.

References

- [C1] T. Craven, Approximation properties for orderings on *-fields, Transactions of the American Mathematical Society 310 (1988), 837–850.
- [C₂] T. Craven, Orderings, valuations and hermitian forms over *-fields, Proceedings of Symposia in Pure Mathematics 58 (1995), 149–160.
- [Co] P. M. Cohn, Quadratic extensions of skew fields, Proceedings of the London Mathematical Society (3) 11 (1961), 531-556.
- [CW] M. Chacron and A. Wadsworth, On decomposing c-valued division rings, Journal of Algebra 134 (1990), 182–208.
- [H₁] S. Holland Jr., Orderings and square roots in *-fields, Journal of Algebra 46 (1977), 207-219.
- [H₂] S. Holland Jr., *-valuations and ordered *-fields, Transactions of the American Mathematical Society 262 (1980), 219-243.
- [L1] T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin/Cummings, Reading, MA, 1980.
- [L2] T. Y. Lam, Orderings, Valuations and Quadratic Forms, Conference Board of the Mathematical Sciences, American Mathematical Society, 1983.

- [LLT] T. Y. Lam, D. B. Leep and J.-P. Tignol, Biquaternion algebras and quartic extensions, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 77 (1993), 63-102.
- [Le1] K. H. Leung, Weak *-orderings on *-fields, Journal of Algebra 156 (1993), 157-177.
- [Le2] K. H. Leung, Strong approximation property for Baer orderings on *-fields, Journal of Algebra 165 (1994), 1-22.
- [M] P. Morandi, The Henselization of a valued division algebra, Journal of Algebra 122 (1989), 232–243.
- [P] A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics 1093, Springer-Verlag, Berlin, 1985.
- W. Scharlau, Quadratic and Hermitian Forms, A Series of Comprehensive Studies in Mathematics 270, Springer-Verlag, Berlin, 1985.
- [TW] J.-P. Tignol and A. R. Wadsworth, Totally ramified valuations on finitedimensional division algebras, Transactions of the American Mathematical Society 302 (1987), 223-249.