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ABSTRACT

It is well known that for a quaternion algebra, the anisotropy of its norm
form determines if the quaternion algebra is a division algebra. In case
of biquaternion algebra, the anisotropy of the associated Albert form (as
defined in [LLT]) determines if the biquaternion algebra is a division ring.
In these situations, the norm forms and the Albert forms are quadratic
forms over the center of the quaternion algebras; and they are strongly
related to the algebraic structure of the algebras. As it turns out, there
is a natural way to associate a tensor product of quaternion algebras with
a form such that when the involution is orthogonal, the algebra is a Baer
ordered *-field iff the associated form is anisotropic.

1. Introduction

Let D be a *-fleld, i.e. a division ring with an involution *. In D, we denote the
set of nonzero symmetric elements by S(D, ). A subset P in S(D, x) is called a
Baer ordering if (i) P+ P C P, (ii) 1 € P and for any nonzero x € D, zPz* C P,
(iii) P U (—P) = S(D,*). In the literature, there are other types of orderings
defined over x-fields; for a reference, see [Ca].

Let F be the center of D and F’ be the fixed field of x in F. (D, *) is called
trivial if D = F or (D, *) is a standard quaternion algebra. Suppose (D, *) is
trivial. If (D,*) admits a Baer ordering P, then T = {} z;zf: 2; € D} is
a preordering on F’. Conversely, if T” is a preordering on F”, then as pointed
out in [Lg, Chapter 14], a T'-normed semiordering (as defined in [Lg, Definition
14.4]) exists. It is clear from the definition of Baer ordering that any normed
T'-semiordering on F” is a Baer ordering on (D, *). Let T = {3_ z;x} : 2; € F}.
When D = F, T' = T. Hence (F, *) admits a Baer ordering iff T is a preordering
on F'. When D = (“Fi’) and * is the standard involution, 77 = T + T'(—a) +
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T(-b) + T'(ab). Hence, T’ is a preordering iff T is a preordering and the form
(1, —a, —b, ab) is T-anisotropic. Thus, when T is a preordering, the anisotropy
of the T-form (1, —a, —b, ab) implies the orderability of (D, *). What about the
case when D = (“Tb) but * is not standard? For (D, ¥} to admit a Baer ordering,
it is still necessary that T is a preordering. In view of the earlier observation, we
may ask the following question.

Does there exist a T-form ¢(D,*) over F' such that (D, *) is Baer ordered iff
&(D, *) is anisotropic over T'?

As we will see, the answer is affirmative when D is a quaternion algebra.
Moreover, such a result can be extended to the case when D is a tensor product
of quaternion algebras with * satisfying certain conditions. Note that up until
now, there is no easy way to determine if (D,*) admits a Baer ordering even
when (D, %) is a quaternion algebra with an orthogonal involution. In [Ley], it is
shown that a *-field (D, ) admits a Baer ordering iff (D, %) is Baer formally real.
However, it is not easy to determine if (D, *) is Baer formally real in general.

Our investigation on the orderability of quaternion algebras is also motivated
by the following longstanding problem raised by Holland [H;]. Does every for-
mally real *-field admit a Baer ordering? A *-field (D, %) is said to be formally
real if ¥ a;zo} # 0 for any nonzero elements o;’s in D and z € S(D, +). By using
the results mentioned earlier, we see that the answer is affirmative when (D, %) is
trivial. Therefore, the next case to be considered is a quaternion algebra with a
nonstandard involution. Thus, it is important to find a necessary and sufficient
condition for a quaternion algebra to admit a Baer ordering.

2. Notation and preliminary results

From now on, we fix the following notation. (D, %) is a *-field with center F' and
[D : F) is finite. For any subset E in D, we denote E\{0} by F.

To deal with noncommutative *-fields, we often make use of *-valuations. The
notion was first introduced by Holland [H3]. The main purpose then was to lift
Baer *-orderings from the residue *-fields, see [Ha, C;]. In the papers [Le;, Le],
*-valuations are used to study *-fields finite dimensional over their centers as the
dimension of the residue *-fields over their centers are usually smaller, and that
allows us to apply an induction argument.

A valuation v is said to be a *-valuation if v(a) = v(a*) for all @ € D. As
usual, we denote the valuation ring, residue class division ring and value group
by Ry, D, and I'p respectively. For any element a in R,, we denote its image in
D, by @. If E is any subset of D, we denote {a: a € ENR,} by E and v(E)
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by ['gz. When v is a x-valuation, * induces an obvious involution ¥ on D,. For
any d € D, we define the involution *4 such that *4(z) = de*d~! for all z € D.
Clearly, v is also a *-valuation with respect to *4. Therefore, x4 also induces an
involution %4 on D, such that for y = & in D,, #4(y) = dz*d-T.

As defined in [Le;], a Baer ordering P is said to be semicompatible with v
if {a € D: n—aa* € P forsomen € N} C R,. Moreover, there is a finest
nontrivial *-valuation v, the order s-valuation of P, semicompatible with P. In
general, v is not necessarily compatible with P. The key constraint is that for
any z € PNS(D, %), {dz=1 : d € P and v(d) = v(z)} need not be a Baer ordering
on (D, *g). In [Leg, Corollary 4.3], a sufficient condition is given to ensure that
{dz=1:d € P and v(d) = v(z)} is a Baer ordering. When that condition fails, v
is not compatible with P. Nevertheless, it is still possible to find a Baer ordering
compatible with a coarsening of v.

ProOPOSITION 2.1: Let v be a x-valuation semicompatible with a Baer ordering
P on (D, *). Suppose [D : F'] is finite and T'p is of finite rank, i.e. I'p has only
a finite number of convex subgroups. Then there exist a Baer ordering P' and
a coarsening v’ of v such that P’ is compatible with v'. Furthermore, v’ can be
chosen such that v’ (D) # v/ (F') if Tp # T'p.

Proof: Let S('p) = v(S(D,*)) and H = T'p + 2I'p. Clearly, H is a subgroup
of I'p and S(I'p) is a union of H-cosets in I'p. As [D : F'] is finite, |I'p/T 5|
is also finite. In particular, |S(T'p)/Tr| = k is finite. Therefore, there exist
di,...,dr € S(D,*) such that S(I'p) = Ule v(d;) + H. (Note that we may
assume d; = 1 and v(d;) + H # v(d;) + H whenever ¢ # j.) For each coset
¥+2I'p € (Cg+20p)/2T p, we fix an element x4, € F' such that v(z,) € y+2T'p.
Let X, = {z, : v+2I'p € (Tm+2I'p)/2T'p}, Y, = {d1,... ,di} and A, = X,-Y,.
Clearly, the mapping o: A, — S(T'p)/2lp defined by o(d) = v(d) + 2I'p is
bijective.

It Y, = {1}, then A, C F'. So, for every d € 4,, ¥4 = ¥. On the other hand,
we conclude from [Le;, Corollary 2.6] that P is a Baer ordering on (D,,*). By
[Ley, Proposition 3.3}, P can be lifted to a Baer ordering compatible with v.

Next, we assume Y, # {1}. For any z € D, we define

G(v(z)) = {7y € Tp: 11| < |v(x) + 27/|¥y € Tp}.
Let d € Y,\{1}. As I'p is of finite rank, there exists d’ € dF’ such that

Necazr G(x)) = G(v(d')). We claim that v(d') ¢ T'r + G(v(d')). Otherwise,
there is an element z in F” such that v(zd') € G(v(d')). As d € Y,\{1}, v(zd') ¢
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['pr. So v(zd’) # 0. But by the definition of G(v(zd')), G(v(zd')) C G(v(d")).
This contradicts our assumption on d’. We have thus proved our claim.

Note that when we define Y,,, we could replace each d; by z;d; whenever z; € F'.
So by the above argument, we may choose z; € F” such that v(z;d;) ¢ G(v(z:d;))
for each i. Then, after each d; is replaced by z;d;, we may assume v(d) ¢
Lp + G(v(d)) for every d € Y, \{1}.

Let A = Ugey,\(13 G(v(d)). As |Yy] is finite, A = G(v(dp)) for some dg €
Y, \{1}. As argued above, v(dp) ¢ A + G(v(dp)). Thus, v(dg) ¢ T'r + A.

Define v': D — I'p/A such that for all z € D, v'(z) = v(z) + A. As v(do) ¢
Tr+A,v'(dy) ¢ v (F"). By [Ley, Corollary 4.3], (D, #4) admits a Baer ordering
for all d € Y,,. Since for any = € A,, there exists d € Y,, such that *, = %4, we
conclude that (D,, ¥q) admits a Baer ordering for all d € A,. For the valuation
v', it is clear that the corresponding A, can be taken as a subset of Y,,. Thus by
[Le;, Proposition 3.3] again, we get a Baer ordering compatible with v'. |

LEMMA 2.2: Suppose v is compatible with a Baer ordering P on (D, ). Then
for any d € P, v is also compatible with the Baer ordering Pd~! on (D, *4). Here
*q4 is the involution on D such that x4(x) = dz*d™! for all z € D.

Proof: By [Le;, Lemma 3.1}, Pd~! is a Baer ordering on (D, #4). Clearly, v
is also a *-valuation on (D, *4). Lastly, if z,y € Pd~! and v(z) > v(y), then
v(zd) > v(yd) and zd,yd € P. Since v is compatible with P, (yd — zd) € P.
Consequently, y — z € Pd™1. |

For the rest of this section, we assume * is an involution on F and F’ is the fixed
field of x in F. If F # F’, we fix an element y € F’ such that F = F'[,/y] and
/Y is a skew element in (F,*). Furthermore, we assume T = {}_ z;z} : ; € F'}
is a preordering in F’.

LEMMA 2.3: Let ui,us,...,u, be elements of F' and L = F[\/u7, ... ,\/uns].
Suppose # is an F'-automorphism of L that extends * and # (/i) = (—1)**\/u¢
fort =1,...,n. Let I’ be the fixed field of # in L. Then

T(L) :={)_wa} : o € L}

is a preordering in L' iff @;_,(1,(—1)*u,) is T-anisotropic. Furthermore, a
T-form ¢ over F' is T(L)-anisotropic over L' iff ®;_,(1,(—1)*us) ® ¢ is T-
anisotropic over F’.

Proof: By using an induction argument, it suffices to prove Lemma 2.3 for the
case n = 1. Note that necessity is obvious in both assertions. Let ¢ = (vq,... ,vs)
be a T-form over F'. Suppose (1,(—1)*'u;) ® ¢ is T-anisotropic.
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If uy isasquare in Fythen L=F, # =+and T(L) =T. As (-1)*u; € T,
our lemma is obvious. Thus, we may assume /u; ¢ F. If z’s and yy’s are in F
and

s
0=3" 5" (@u + yuv/aD) (@ + vi(~1)™ V),
t=1 1

then 0 = 37 ; > (zux} + yuyl(—1)* ui)v,. Therefore, (1,(—1)*1u;) ® ¢ is
T-isotropic. This is a contradiction. A
By putting ¢ = (1), the calculation above shows that

T(L):= {Z zz¥ iz e L}

is a preordering in L’ whenever (1,(—1)*u;) is T-anisotropic. Moreover, when
T(L) is a preordering, the same calculation shows that ¢ is T'(L)-anisotropic.
|

LEMMA 2.4: Let L be as defined in Lemma 2.3. [L : F] = 2™ if @, (1, (—=1)Peu)
is T-anisotropic for any f1,..., 08, in {0,1}.

Proof: Suppose n = 1. If L = F[\/uj] = F, then u; € FZn F'. So, u; € (F')?
or u; € y(F")?. Note that u; € y(F')? is possible only when F # F’. In the
former case, {1, —u,) is T-isotropic. In the latter case, (1,u,) is T-isotropic. This
contradicts our assumption that (1,+wu,) are T-anisotropic. Hence, [L : F] = 2.

For n > 1, we let K := F[\/uy,... ,,/un_1] and # be an automorphism of K
that extends * and fixes every (/u; fort = 1,... ,n—1. By the induction assump-
tion, [K : F] = 2"~1. By Lemma 2.3, T(K) := {3 «;2¥ : z; € K} is a preorder-
ing. As ®:'=_11(1,ut) ® (1, +u,) is T-anisotropic, (1, +u,) are T'(K)-anisotropic
by Lemma 2.3. By using the argument for n = 1, we see that [K(,/u,) : K] = 2.
Hence [L: F] = 2™ 1

3. Tensor product of quaternion algebras

Let D be a tensor product of quaternion algebras and x be an involution on D.
Our first goal is to define a form ¢(D, *) such that (D, ) admits a Baer ordering
if ¢(D, %) is anisotropic. Unfortunately, such a form does not always exist when
* is of the second kind.

Definition 3.1: Let D be a tensor product of quaternion algebras over a field
F. We say an involution x is ‘nice’ if x is an F/F’'-involution and there exist
a1,as,... ,an, by, b2,... by, € F' such that

_{a1,b Qn, by
o) er o ()
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In that case, we define ¢(D, x) = @, (1, a¢, bs, —arbe).

Note that in Definition 3.1, it is possible that F' = F”, i.e. * is of the first kind.
Clearly, * is ‘nice’ if * is of the first kind. When D is a quaternion algebra, we
conclude from [S, Theorem 11.2] that any involution of the second kind is also
‘nice’. However, we do not know if every involution of the second kind is ‘nice’
when D is not a quaternion algebra. In general, if * is an F/F'-involution and
D is a tensor product of quaternion algebras over F, D may not be expressible
as a tensor product of *-closed quaternion algebras. For an example, see [CW,
Section 4]. Nevertheless, our assumption is weaker than the condition that D is
expressible as a tensor product of *-closed quaternion algebras.

As suggested in the case of a standard involution on a quaternion algebra,

we should view ¢(D,#) as a form over a preordering. From now on, we set
T = {ZIL‘,Z: L X GF}

LEMMA 3.2: Suppose D is a quaternion algebra and T is a preordering on F'.
Then as a T-form over F', ¢(D, %) is uniquely determined if x is of the first kind.

a,b a,b
D=2 })=[=2=2).
(%)- ()
It follows from [L;, Proposition 2.5] that (1,a,b, —ab) and (1,a’,b’,—a’t’) are
isometric as quadratic forms over F. Therefore, they are also T-isometric. [ |

Proof: Suppose

Note that in general, ¢(D, *) depends very much on the choice of a,’s and b;’s
when * is of the second kind. So in defining ¢(D, *), we must first fix the choice
of a;’s and b;’s.

From now on, we fix the following notation. Let D be a tensor product of
quaternion algebras over F' and * be a ‘nice’ involution on D. Therefore, there
exist a1,... ,8n,b1,... ,b, in F’ such that

a ’b n:bn n
D= ( 1F 1) QF - QF (a = > and ¢(D,*) = ®(1’at,bt,_‘atbt>.

t=1

When * is of the second kind, we fix an element y € F’ such that F' = F'[,/y]

and ,/y is skew. For eacht =1,...,n, we define D, = (“—'1;95) We let 4, j¢, k¢
be elements in D; such that

.2 .2 e
iy =a, jy=b and k;=15 = —Jiis.

Clearly, D; = F + Fi; + Fji: + Fk;. As defined earlier, T = {}_ z;z}|z; € F}.
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When we write D as a tensor product of quaternion algebras, it is possible to
replace each a; by ya; and/or b, by yb;. The next result shows that those changes
do not concern us in determining the anisotropy of the form ¢(D, *).

LEMMA 3.3: If a; is replaced by ya; and/or b is replaced by yb, then ¢(D, *)
is off by a scalar multiple of an element in F’.

Proof: For convenience, we will drop the subscripts. It suffices to show that
there exist z, 9,23 in F’ such that

zy - (1, ay,b, —aby) =r x2 - (1,a, by, —aby) =r z3 - (1,ay, by, —ab)
=7 (1, a, b, -—ab).

As —~y €T, (1,ay,b,—aby) =1 (1,~a,b,ab), (1,a,by, —aby) =7 (1,a,-b,ab) and
(1,ay, by, —ab) =7 (1,—a,—b,—ab). Clearly, we can take z; = b,zy = a and
x3 = —ab. 1

We are now ready to state our main results.

THEOREM 3.4: Let D and * be as assumed above. If T' is a preordering in F'
and ¢(D, ) is T-anisotropic, then (D, x) is a Baer ordered x-field.

THEOREM 3.5: Suppose the involution * is not symplectic. Then T is a pre-
ordering in F and ¢(D, ) is T-anisotropic iff (D, *) is a Baer ordered *-field.

In proving Theorem 3.4 and Theorem 3.5, we often need to deal with valuations
on F'. It is desirable that for a valuation v: F' — T, v(y), v(a;)’s and v(b;)’s
satisfy certain conditions.

LEMMA 3.6: Let v be a valuation compatible with T on F'. Then v extends
uniquely to F when F’ # F. Furthermore, if we define 5: F' — T /2T g such
that for all z € F, (x) = v(z) + 2I'p-, then there exist nonnegative integers r, s

and elements al, by,...,b, in F’ such that
al bl

o () ()
(i) ¢(D,*) =z - @} (1,0}, b}, —aib}) for some z € F',

" n,

(ii) o(y) =0 or o(y) ¢ (0(a1),5(b1),... ,0(a,), 0(bL)) if F # F',
(iv) v(a}) =0fort=1,... ,r+sifr+s>1,

(v) v(b})=0fort=1,...,rifr > 1,

(vi) 9(bl.4q),-.. ,0(b},) are Zy-independent in T /Ty if r +1 < n,

(vil) D(@)yg41)s--->0(an,),0(b4y),... ,0(b},) are Zp-independent in I'rp/T'r if
r+s+1<n.
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Proof: Suppose F # F'. Clearly, v extends uniquely to F' if v(y) ¢ 2T'p.. If
v(y) € 2T, we may assume v(y) = 0. However, 7 is not a square in F” as T is
compatible with v. Hence, v extends uniquely to F.

Let H = ((a1),0(b1),...,0(an),0(by)). If F # F', 4(y) # 0 and 9(y) € H,
then there exists a subgroup H' of index 2 in H such that H = H' + (4(y)). For
each t, we set u; = a, if 0(a;) € H' and set u; = ya, otherwise. Similarly, we set
wy = by if #(b;) € H' and w,; = yb; otherwise. Clearly,

_ {1, w1 Up s Wn
D’( F )®F ®F( F )

(0(uw1),0(wy),. .. ,0(us), ¥(ws)) = H' and H' does not contain (y). By Defini-
tion 3.1 and Lemma 3.3, the new form associated becomes @y, (1, u¢, we, ~uswy)
which is T-isometric to z - ®;_, (1, a¢, by, —asbe) for a suitable element z € F'.
Without loss of generality, we may assume u; = a; and w; = b, for all t. In

particular, we may assume %(y) = 0 or 9(y) ¢ H.

For convenience, we identify i; with 1®1---®¢;®1---®1, j, with1®1---®
ji®1---®1and k; with1®1---®k, ®1---®1. Thus, we may assume i, jy, k;
are elements in D for t = 1,... ,n. Let B = {H?=1at sy = 1,4, 7 or k)
Consider now the F'-algebra

al)bl an)b
DI — ( FI )®F’ ®F’ (?71) .

We claim that there exist a subset {i},j;,k; : t = 1,... ,n} of D’ and nonnegative

integers r, s such that a; = i’f,b; = j’f are elements in F' fort = 1,... ,n; and
the following conditions hold:

(a) {aF":a € B} = {([Iiey @) F" : ap = 1,44, j; or K},

(b) ki =1dyj; = —jiy fort=1,... ,n,

(c) 4ih = ibiy, 6hfy = Juty, and jijy = jugi if 1 <t/ #t <n,

(d) v(a}) =0fort=1,...,r+sifr+s>1,

(e) u(b)) =0fort=1,...,rifr>1,

(f) 9(¥ty)s-- -, O(b,,) are Zy-independent in Ip/20p ifr+1<m,

(g) 9(ahyoy1)y--- »0(an), 0(blyy),... ,0(b],) are Zo-independent in I'p/ /2T p if

r+s+1<n

Before we prove our claim, we need to prove some preliminary results. Let
A = {zF' : z € B}. Clearly, A can be regarded as a multiplicative elementary
2-abelian group. As in [TW], we define a nondegenerate map Ba: Ax A — {£1}
such that

B(z1F', 2 F 2y 2o F' = 2o F' for every 21 F', 2 F' € A.
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For any subgroup G in A, we define
L = (2F": B4(2F', 2 F') = 1 for all 2'F’ € G}.

Let A be the divisible closure of I'zs. Note that {ét,}i” G F it =1,2,... 0}
is a basis for the elementary 2-abelian group A. Therefore, there exists a group
homomorphism w: A =+ A/T'gs such that for t =1,2,... ,n,

(at) v(bs)

5 +T'm and w(jtF")— 5

( tF ) + FF'
We denote ker(w) by K. Clearly, K+ = {2F' € A: zaF’ = azF" for all aF” € K}.

There are three possible cases.

Case (i): K = {F'}. In this case, we set i, = i; and j, = j; for all t. It is
straightforward to check that 7 = s = 0 and (a)—(g) hold.

CASE (ii): K # {F'} and K = KNKL. Let i\’ € K. In K, there exists a
subgroup K’ of index 2 in K such that {F”,#{F'} - K’ = K. As B is nondegen-
erate, K'* 2 KL, Let j, € K'"\KL and B = {F, i, F', j;F", 4, F'}. Clearly,
BnBt = {F’} A= BB and w(B) + w(B*) = w(A). Moreover, as K' C B+
and |w(A)| = 2 !T’Il’ w(B) ¢ w(B'). Hence, w(B) Nw(B+) = {Tp}.

Case (iii): K\(KNKL) # 0. Let i} € K\K*. As i1 F’ ¢ KN K1, there exists
§1F" € K such that {3} = —j;4}. Let

B={Fi\F jiF,iijiF'}.

Clearly, w(B) = {T'~} and BN B* = {1}. As B, is nondegenerate, A = B - B+.
We now prove our claim by induction. Suppose n = 1. Clearly, {¢{, j1,771}
defined earlier satisfy (a)—(g). In fact, r = s = 0 for Case (i); r=0and s =1
for Case (ii); and r = 1,s = 0 for Case (iii).
Next, we assume n > 1. As before, we simply take r = s =0 when X = {F"}.
If we are in Case (ii) or Case (iii), we let B be as defined in the previous argument.
By [TW, Lemma 2.5], we see that

/
D' = (“lFf’ ) ®r F/[B].

We can thus apply induction on F'[B1] to complete the proof of our claim. Note
that » = 0 and s > 1 if Case (ii) happens; and r > 1 if Case (iii) happens.
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Lastly, we show (i)—(vii) are satisfied. By (a), we see that

a’, b a bl
D:(%§>®p~®p(?ﬁ) and H = (o(a}),5(b}),... ,5(a)),5(b))).

Therefore, (i) and (iii) hold. Observe that

n

n
Q)L ar,be, —achs) = R)(1, 7, 57, kF)
t=1

t=1
and
- g2 g2 42 - 7y 1yt
®<172/t7],tak t) = ®<1’at7bt1 —azbj).
t=—1 t=1

Thus (ii) follows from (a). (iv)~{v) follow easily from (d) and (e). Lastly, observe
that 'y = 2T'r = 2T U (v(y) + 205 ). Hence, (vi) and (vii) follow from (f), (g)
and (iii). 1

Definition 3.7: Suppose ¢; is a T form for t = 1,2,... ,n. We define

®% ¢ = (1) whenever k > k'.

Recall that if v is a valuation compatible with a preordering T on F', T, :=
T - (1+ M,) is a preordering fully compatible with v on F’. For more details, we
refer the reader to [Lg, Chapter 3].

LEMMA 3.8: Let v be a valuation compatible with T on F’. Suppose a;’s and
b;’s satisfy the conditions (iii)—(vii) in Lemma 3.6.
(1) @7, (1,a¢, by, —asby) is T-anisotropic iff for any aryy,. .. ,args € {0,1},

r r+s

®(1,dt,5t,—dt5t) ® ® (1,(=1)*a,) is T-anisotropic.
t=1 t=r+1

(2) Suppose ¢(D, *) = @, (1, as, by, —asb,) is T-anisotropic. Fort =1,... ,n,

D, is a division ring and v has an extension to D;. (Recall that Dy = (“‘I;b‘) J)

Furthermore, i
(%&) ifl<t<r,
Dy = F-‘[ft] ifr+1<t<r+s,
F ifr+s+1<t<n.
Proof: (1) By condition (iii), we see that

17(a,+3+1), . ,ﬁ(an), 'l—)(b—,-.}.l), ces ,’l_)(bn)
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are Z,-independent in I’z /T'7. So (1) follows from [Lg, Theorem 4.6].

(2) We first show that D, is a division ring. Let D} be the F'-algebra (“},—,b‘)
in D;. Since (1,as,by, —ab;) is T-anisotropic, {(as, by, —aibe) is anisotropic as
a quadratic form over F’. Hence by [Ly, Theorem 2.7], Dj is a division ring.
We are done if F = F’. Otherwise, we may view D; as the quotient ring
Di[z)/(z?® — y)Dj[x] where z is an indeterminate that commutes with every
element in D,. Obviously, (z* — y)Dj[z] is a two-sided ideal. As stated in
[Co, p. 532], Dj|z]/(z* — y)Dj[z] is a division ring if it does not have any
zero divisor. By another result stated in [Co, p. 534], Dj[z]/(z? — y)Dj;lz]

has no zero divisor if the equation u?

= y has no root in Dj. Therefore,
D, is a division ring if the equation 4?> = y has no root in Dj. Suppose
o1, 09,03,04 € F' and (a1 + agiz + aszje + asky)? = y. Then it is easy to
see that o2 + oda; + a2b; — alaby = y. As —y € T, (1,a,bt, —asb) is then
T-isotropic. This is impossible. Therefore, D; is a division ring.

Suppose r+s+1 < t < n. Then v(a;)+2I'F and v(b;)+2I' ¢ are Zy-independent
in T'r/2Tr. By [TW, Proposition 3.5, v extends to a *-valuation totally ramified
over F.

If r+1<t<r+s, then v(a;) = 0 and v(b;) ¢ 2T'r. By (1), (1,xa,) are T-
anisotropic. Since T' = {3_ z;2} : 7 € F'}, we can apply Lemma 2.4 to conclude
that a; ¢ F2. By an argument used in the proof of [CW, Theorem 3.9], we see
that v extends to a valuation on D;. Furthermore, the residue *-field is F/[i;).

If 1 <t <7, then v(as) = v(b) = 0. As (1,a¢, by, —aibe) is T”-anisotropic,
(1, @, by, —agb;) is T-anisotropic. By an earlier argument, we see that ( QFE—‘) is a
division ring. Apply an argument used in the proof of [CW, Theorem 3.8]; we see
that v extends to a valuation totally unramified over F on D; and D; = (E‘Tf’—')
|

Proof of Theorem 3.4: Suppose T is a preordering and

n

d)(Da *) = ®(17 g, bt» _‘a'tbt)

t=1
is T-anisotropic. Apply [L2, Isotropy Principle 18.2] to the form

n

®(17 Gy, bt7 _atbt>;

t=1

we get a valuation v: F/ — I's» compatible with T such that
() either v(as) + T'r # I'r or v(b) + I'r # I'r for some t = 1,... ,n.



12 K. H. LEUNG Isr. J. Math.

(I1) @y, (1,a¢, b, —asby) is T7-anisotropic.

By Lemma 3.6, we may assume v is defined on F even when F' # F'. Since v is
compatible with T, T = {3 z;z} : ; € F'} is a preordering on F”. This fact will
be used repeatedly in the subsequent argument. Furthermore, in view of Lemma
3.6, we may assume a;’s and b;’s satisfy the conditions (iii})—(vii) there.

Our strategy is to prove by induction on n that

(i) D is a division ring and v extends to a valuation ¢ on D.

(ii) (D, *) admits a Baer ordering.

By Lemma 3.6 and [CW, Lemma 1.8], the extension © obtained in (i) is in fact
a *-valuation on D. By [Le;, Proposition 3.3], it suffices to show (i) and that
(D3, %4) is a Baer ordered -field for every d € S(D, x).

Suppose n = 1. By Lemma 3.8 (2), D is a division ring and v extends to a
valuation ¥ on D. Recall that r,s are as defined in Lemma 3.6. By condition
(I), we see that r = 0. When s = 0, the residue *-field is (F,*). As T is a
preordering, (F,*) admits a Baer ordering. For all d € S(D,*), ¥4 = ¥, so
(F,%4) admits a Baer ordering. In case s = 1, the residue -field is (F[i1], ¥).
For any d € S(D,*), *¥4lp = *|p. As T = {Y zz} : 2, € F} and (1,%a,)
are T-anisotropic, we conclude from Lemma 2.3 that (F[i;], *4) admits a Baer
ordering.

Suppose n > 1. By Lemma 3.8 (2) and [M, Theorem 1], we see that D is a
division ring and v has a unique extension to D if

a1, b Gr, by - -
E = ( IFI) Rp - ®p (_F—) ®p Flirt1] ®p -+ @p Flirys

is a division ring. Here, it is understood that

Flip11]®p - ®p Flirys] = F ifs=0

a1,b @r, by _
(IF1>®F”.®F( F ):F 1f7‘:0_

By Lemma 3.8 (1) and Lemma 2.3, we see that F[i,41,...,4r44) is a field of
degree 2° over F'. In particular, this shows that Fli,;1]®p ---®p F[ir4s) can be
identified as the field Fliry1,... ,irss] which we denote by K. Clearly, we may
view

and

_ 6’1551 aryb'r‘
e (5B)or-on (5.
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For any involution # on K with #|z = ¥|z, we set T'(#) = {)_ zax¥ : 7, € K}.
By Lemma 3.8 (1) and Lemma 2.3, T'(#) is a preordering and

T

(1, a1, by, —abe)
t=1
is T'(#)-anisotropic.

By (I), we see that » < n. So if we set # = %, then we can apply an induction
assumption to see that (E, %) is a Baer ordered *-field. (Clearly, * is still ‘nice’
on E.) This proves that v extends to a valuation ¢ on D. Furthermore, for any
d € S(D,*), #4]p = *|p. So if we set # = %4, we may also apply induction to
conclude that (E,*,;) is a Baer ordered x-field. By our earlier remark, we see
that D is a Baer ordered x-field. 1

To prove Theorem 3.5, we assume that P is a Baer ordering on (D, *). First,
we claim that we may assume all i,’s and j;’s are symmetric. For t = 1,... ,n,
we let #; be the F/F'-involution on (a—‘F’,ﬂ) that fixes i; and j;. Note that such
involution exists because a;,b; € F/ for t = 1,... ,n. As * is not symplectic and
*|p = (#1 @ #2--- ® #4)|p, * Is similar to #; @ #2-- ® #,. By Lemma 2.2,
(D, *) admits a Baer ordering iff (D, #) admits a Baer ordering. Hence, we may
assume * = #. This proves our claim.

As defined in [Le;], there is a finest valuation vp, the order *-valuation of P,
that is semicompatible with P. Suppose vp(D) = vp(F’). Then we may assume
vp(iy) = vp(ji) = 0 for all t. Hence, the residue division ring is a tensor product
of quaternion algebras over F. By [Le;, Corollary 2.11], the residué¢ division
ring must then be a quaternion algebra whereas the induced involution must
be the standard involution. This is impossible as 4y, j; are symmetric elements
which are not central in the residue division ring. Therefore, we conclude that
vp(D) # vp(E").

Unfortunately, vp may not be compatible with P. By Proposition 2.1, there
exists a coarsening v : DT p of vp such that I'p # ' and v is compatible
with a Baer ordering P’ when F is finitely generated over Q. Thus, we first
assume F is finitely generated over . As before, we may also assume conditions
(iii)—(vii) of Lemma 3.6 hold. Let r, s be as defined in Lemma 3.6. To prove
Theorem 3.5, it suffices to show that @j._, (1, a¢, b, —abe) is T-anisotropic. In
view of Lemma 3.8 (1), we only need to show that for any a,41,... 0.4 in

{0,1},

r r+8

¢, = ®<1,C_Zt, Bt, —(_Ztl—)t> ® ® <1, (—l)at&t>

t=1 t=r+1
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is T-anisotropic. As before, it is understood that ;_,(L,as, b, —acb;) = (1)
when r = 0 and @, (1,(~1)*a,) = (1) when 5 = 0.
Recall that in the proof of Theorem 3.4, we have shown that

= 5,1,—61 ar, b,
e () (5

where K = Fli;41,-.- ,ir+s]- Again, it is understood that K = F if s = 0 and
D,=Kifr=0.

LEMMA 3.9: Let r and ¢' be as defined above.
(i) Ifr =n, * is of the second kind, F = F" and ¥ is of the first kind.
(ii) If r # n, then Q1° +1( (-1)*¢@,) is T-anisotropic. In particular, ¢’ is
T-anisotropic if r =

Proof: Since [D : F] = [D, : K], we conclude that K = F and I'p = I'p.
However, as I'p # '+, * must be of the second kind and K = F = F'. Hence,
* is of the first kind. This proves (i).

Observe that for t = r +1,...,7 + s, there exists d; € {1,7;} such that
dyiy = (—1)*tid;. Set d = dr+1 r+, if s # 0. Otherwise, set d = 1. Clearly,
d € S(D,*). In D,, %4 fixes i; and j; for t = 1,...,r. Therefore, %4 is either
orthogonal or is of the second kind on D,. As v is compatible with P’, (D, ¥4) ad-
mits a Baer ordering. In particular, T'(d) = {}_ zaz3? : To € K} is a preordering.
By Lemma 2.3, @2+ (1,(—1)**a,) is T-anisotropic as T = {}_ z.z} : 7 € F}.
]

Proof of Theorem 3.5: We first assume F is finitely generated over Q. This
allows us to use the results we have just proved. We shall prove Theorem 3.5 by
induction. Suppose » = 1. If r = 0, then by Lemma 3.9 (ii), we see that ¢ is
T-anisotropic. So ¢(D, *) is T-anisotropic. Note that r = 0 when * is orthogonal
as by assumption of v, I'p # T'p. If r = 1, we conclude from Lemma 3.9 (i) that
D, = (‘“Fl,") and * is orthogonal. Since P’ is a Baer ordering on (D,, %) and ¥ is
orthogonal, our previous argument shows that (1, as, b1, —G1by) is Ty-anisotropic
where T} = {322 : zo € F'}. By Lemma 3.6 (iii), we see that T} = T. So
(1,@y, by, —@1by) is T-anisotropic and hence ¢(D, *) is T-anisotropic. This proves
Theorem 3.5 for n = 1.

Now assume n > 1. By Lemma 3.9 (ii) again, we may assume 0 < r < n. Let
d and T'(d) be as defined in the proof of Lemma 3.9. Recall that *4 is ‘nice’ and
(Dy, *4) admits a Baer ordering. If r < n, we may apply an induction argument
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to conclude that .

®(1a @y, by, ~sby)

t=1
is T'(d)-anisotropic. By Lemma 2.3, ¢’ is then T-anisotropic. So again, ¢(D, *)
is T-anisotropic. Since I'p # I'p, 7 < n when * is orthogonal. Hence, ¢(D, )
is T-anisotropic when # is orthogonal. Finally, we consider the case r = n. As
before, we see that * must be orthogonal. By using a similar argument as in
case n = 1, we conclude that ¢’ = ¢(D,, %) is T-anisotropic. So ¢(D, %) is then
T-anisotropic.

Lastly, we remove the condition that F is finitely generated over Q. Suppose

#(D, x) = (z1,... ,2) is T-isotropic. Then

Z(Z UaflUgg)Za =0

for some uqp’s in F. Let L be the field obtained by adjoining a;’s, b;’s, uap’s and

uyg’s to Q. Let
E o= a1, ® ® n, by
-— L L L _L - .

Clearly, E is *-closed and PN E is a Baer ordering on (E,*|g). As L is finitely
generated over Q, our previous argument shows that ¢(E, *) = (z1,... ,z1) is T"-
anisotropic where T := {}_ z,7 : =, € L}. This contradicts our assumption
that (3" uaptyg)?a = 0. Hence we conclude that ¢(D,*) is T-anisotropic.
|

Note that in the proof of Theorem 3.5, if r + s # n, ¢(D, *) is T-anisotropic

even when x is symplectic. This follows easily by considering the involution
#1 @ H#2® - #n_1 @ x, where *,, is the standard involution. However, the
following example shows that ¢(D, ) need not be T-anisotropic in general if * is
symplectic.
Example: Let F = Q(z,y, 2) where z,y, z are indeterminates. Obviously, F is
formally real and T := {3 #2 : t; € F} is a preordering in F. Let v: F — Z x Z
be the real valuation such that v(z) = (0,0),v(y) = (1,0) and v(2) = (0,1). Set
ay = —(1+z), by =y, a2 = = and by = z. With respect to v, it is easy to see
that (1,+a,) and (1,+a,) are T-anisotropic. Therefore,

(l,al,bl,—a1b1> and (1,(12,()2,—(12()2)

“‘F’.b‘) is a quaternion algebra. By

are T"-anisotropic. Thus, for t = 1,2, Dy = (
Lemma 3.8, we see that v can be extended to D; and D,. Moreover, the residue
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fields are respectively Q[v/@;] and Q[v/@z]. As Q[v/a7] ® Q[v/a3] is a field, we can
apply Morandi’s result to conclude that D := D; ® D, is a division ring and v
extends to a valuation on D. For convenience, we also denote the extension by
v.

Suppose * is the symplectic involution such that i;,j; are skew and i, j, are
symmetric. As # is of the first kind, v is a *-valuation. Let Y, be as defined in
the proof of Proposition 2.1. It is not difficult to see that Y, can be taken to be
{1, j2,91ke, j1ka2}. To see that (D, ) admits a Baer ordering compatible with v,
it suffices to show (D,, *4) admits a Baer ordering for every d € Y,

By our earlier calculation, D, = Q[i;,%2). As D, is now a field, (D,,*%4)
admits a Baer ordering if {3 242¢ : 2z, € D, } is a preordering. By Lemma 2.3,
it suffices to check if the forms

1,1+ 2))®(1,+£3) and (1,+(1+ %)) Q(1,-7)

are T-anisotropic. (Note that the first two forms correspond to d = 1, j, and
the second two forms correspond to d = i1ky and jikz.) To prove that, we
need only to show that there exist three orderings P, P, P on Q(Z) such that
{-z,1+%)} C P, {-%,—-(1+%Z)} C P, and {Z,(1+Z)} C P5. The existence of
Pj is obvious. For the construction of P; and P», we choose real numbers ¢1, 13
which are transcendental over Q and t; < —1 < #; < 0. Define isomorphism
fi: Q@) — R such that f;(Z) = ¢; for i = 1,2. It is then clear that P, =
i ({z € Rjz > 0}) and P, = f; '({x € Rjz > 0}) are the required orderings.
Note that (1, a;,az) is T-isotropic. Therefore,

(1,a1,b1,—a1b1) ® (1, a2, bz, —azbs)
is also T-isotropic. This shows that Theorem 3.5 is no longer true if * is sym-
plectic. However, it is not difficult to see that in our example,
(1,a1,b1, —a1b1)®(1, —ag, —bg,a2by) and (1,—ay, —by,a1b1)®(1, az, bz, —azb2)
are TV-anisotropic. In fact, by modifying the proof of Theorem 3.5, it is possible
to prove the following:
THEOREM 3.10: Let D be as defined before. Supposen > 1 and * is a symplectic
involution. Then (D, *) admits a Baer ordering iff T is a preordering in F and
there exists a valuation v compatible with T on F' such that fort = 1,...,n,
®l#(1, ay, by, —aiby) ® (1, —ay, —by, aiby) is TV-anisotropic.

In concluding this section, we state an easy corollary of Theorem 3.5 on SAP
fields. For a quadratic form characterization of SAP fields, we refer the reader
to [P, Theorem 9.1].
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COROLLARY 3.11: Suppose F is a SAP field and « is an involution of the first
kind. Then (D,*) does not admit a Baer ordering unless n = 1 and « is the
standard involution.

4. A possible counter example

As we have mentioned before, one of our motivations in our study of Baer ordered
quaternion algebras is to determine if every formally real *-field admits a Baer

orderings. Let
a,b

In D, we define * to be the orthogonal involution that fixes ¢, j. It can be shown
that (D, %) is formally real iff

ab(z?a + y2b) £ ab+ty +ta(za+9?b) and 0 # ab+t, +ta(z%a + y7b)
for any =,y € F and t1,t2 € T. Hence, (D, %) is formally real iff
ab # t; + (22 + y2b%)a + (tay? + z2a?)b

and
0 # t1 + (t22% + v20%)a + (tay? + z2a®)b.
We conjecture that the above condition is not equivalent to the condition that

(1, a, b—ab) is T-anisotropic. To construct a possible counter example, we propose
the following.

A POSSIBLE COUNTER EXAMPLE. Let z1,...,2:,%1,--- ,Ys,21,--- , 2, G,b be
indeterminates. Let K = Q(z1,...,%r, Y1,--- 1Ys» 21,--- , 21,0, 0) and F =

K|[/u] where
u=ab— (22 +--+22) —a(@l+ - +y2) - b2+ + 2D).

Let D = (%b- and * be the orthogonal involution that fixes i, j. We first show
that D is a division ring.

Let T(K) = {3_a? : oy € K}. Observe that (1,a,b, —ab) is T(K)-anisotropic
as there exists a real valuation v : K — ZxZ such that v(a) = (1,0), v(b) = (0,1)
and v(z;) = 0 for all i. By Lemma 3.8, we see that (“Tb) is a division ring. As
in the proof of Lemma 3.8, D is a division ring if we show that 2? # u for any
2 € (“Tb) Suppose oy, az,a3,a4 € K and (a1 + agi + a3zj + a4k)2 = u. Then

o} +0ja+ajb—ajab=ab— (o] + - +2d) —a(yf +- - +yd) ~b(ef +- o+ 2)-
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It follows that (1, a, b, —ab) is then T'(K)-isotropic. This is impossible. Therefore,
D is a division ring.

Note that F is formally real and T = {}.z? : z; € F} is a preordering.
Clearly, (1,a, b, —ab) is T-isotropic even though (1, a, b, —ab) is T'(K)-anisotropic.
By Theorem 3.4, (D, ) does not admit a Baer ordering.

Clearly, we may order K such that a,b are positive and

Tlyere sTpyY1y--+ 3YsyR1yevr 4 2t

are infinitesimally small compared with any element in Q(a,b). In that case u
is also positive. Obviously, this ordering can be extended to F. In particular,
(1, a,b) is T-anisotropic. Therefore, (D, ) is formally real if

ab # t1 + (222 + y?b)a + (t2y? + z2a?)b

for any z,y € F and ty,ty € T. Apparently, it is different from the condition
that (1, a, b, —ab) is T-isotropic. So it is reasonable to believe (D, ) is a possible
counter example. Moreover, our example is generic in the sense that if there
exists a formally real quaternion algebra which does not admit a Baer ordering,
then our constructed example is one of them.
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