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ABSTRACT 

It is well known that for a quaternion algebra, the anisotropy of its norm 

form determines if the quaternion algebra is a division algebra. In case 

of biquaternion algebra, the anisotropy of the associated Albert form (as 

defined in [LLT]) determines if the biquaternion algebra is a division ring. 

In these situations, the norm forms and the Albert forms are quadratic 

forms over the center of the quaternion algebras; and they are strongly 

related to the algebraic structure of the algebras. As it turns out, there 

is a natural way to associate a tensor product of quaternion algebras with 

a form such that when the involution is orthogonal, the algebra is a Baer 

ordered ,-field iff the associated form is anisotropic. 

1. I n t r o d u c t i o n  

Let D be a .-field, i.e. a division ring with an involution *. In D, we denote the 

set of nonzero symmetric elements by S(D, , ) .  A subset P in S(D, *) is called a 

Baer ordering if (i) P + P  C P, (ii) 1 C P and for any nonzero x E D, xPx* C P, 

(iii) P U ( - P )  = S(D, . ) .  In the literature, there are other types of orderings 

defined over *-fields; for a reference, see [C2]. 

Let F be the center of D and F t be the fixed field of * in F.  (D, *) is called 

trivial if D -- F or (D, *) is a standard quaternion algebra. Suppose (D, . )  is 

trivial. If (D, *) admits a Baer ordering P,  then T '  = { ~  xtx~: xt e D} is 

a preordering on F t. Conversely, if T t is a preordering on F t, then as pointed 

out in [L2, Chapter 14], a Tt-normed semiordering (as defined in [L2, Definition 

14.4]) exists. It is clear from the definition of Baer ordering that any normed 

T'-semiordering on F '  is a Baer ordering on (D, *). Let T = {~-~ xtx~ : xt E F}. 

When D = F,  T t = T. Hence (F, . )  admits a Baer ordering iff T is a preordering 

F ' .  When D = ( - ~ )  a n d *  is the standard involution, T ' =  T + T ( - a ) +  o n  
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T ( - b )  + T(ab). Hence, T' is a preordering iff T is a preordering and the form 

( 1 , - a , - b ,  ab) is T-anisotropic. Thus, when T is a preordering, the anisotropy 

of the T-form (1, - a ,  -b ,  ab) implies the orderability of (D, *). What about the 

when D = ( ~ )  but*  is not standard? For ( D , . ) t o  admit aBaer  c a s e  ordering, 

it is still necessary that T is a preordering. In view of the earlier observation, we 

may ask the following question. 

Does there exist a T-form r ,) over F'  such that (D, ,)  is Baer ordered iff 

r *) is anisotropic over T ?  

As we will see, the answer is affirmative when D is a quaternion algebra. 

Moreover, such a result can be extended to the case when D is a tensor product 

of quaternion algebras with �9 satisfying certain conditions. Note that up until 

now, there is no easy way to determine if (D, *) admits a Baer ordering even 

when (D, *) is a quaternion algebra with an orthogonal involution. In [Le2], it is 

shown that  a *-field (D, *) admits a Baer ordering iff (D, *) is Baer formally real. 

However, it is not easy to determine if (D, .) is Baer formally real in general. 

Our investigation on the orderabitity of quaternion algebras is also motivated 

by the following longstanding problem raised by Holland [H1]. Does every for- 

mally real ,-field admit a Baer ordering? A *-field (D, *) is said to be formally 

real if -~ aixa* ~ 0 for any nonzero elements ai 's  in D and x �9 S(D,  *). By using 

the results mentioned earlier, we see that the answer is affirmative when (D, *) is 

trivial. Therefore, the next case to be considered is a quaternion algebra with a 

nonstandard involution. Thus, it is important to find a necessary and sufficient 

condition for a quaternion algebra to admit a Baer ordering. 

2. N o t a t i o n  and prel iminary results 

From now on, we fix the following notation. (D, .)  is a *-field with center F and 

[D: F] is finite. For any subset E in D, we denote E\{0} by/~. 

To deal with noncommutative .-fields, we often make use of .-valuations. The 

notion was first introduced by Holland [H2]. The main purpose then was to lift 

Baer *-orderings from the residue ,-fields, see [H2, C1]. In the papers [Lel, Le2], 

.-valuations are used to study *-fields finite dimensional over their centers as the 

dimension of the residue *-fields over their centers are usually smaller, and that  

allows us to apply an induction argument. 

A valuation v is said to be a .-valuation if v(a) = v(a*) for all a E /). As 

usual, we denote the valuation ring, residue class division ring and value group 

by Rv,/)v and FD respectively. For any element a i n / ~ ,  we denote its image in 

Dv by ~. If E is any subset of D, we denote {~: a E E N R~} by /~  and v(/~) 
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by FE. When v is a ,-valuation, �9 induces an obvious involution ~ on D. .  For 

any d E / ) ,  we define the involution *d such that *d(X) = dx*d -1 for all x E D. 

Clearly, v is also a *-valuation with respect to *d. Therefore, *d also induces an 

involution *a on b~ such that  for y = 2 in D~, 7~d(y) = dx*d -1. 

As defined in [Lel], a Baer ordering P is said to be semicompatible with v 

if {a E D: n - h a *  E P f o r s o m e n  E N} C R..  Moreover, there is a finest 

nontrivial ,-valuation v, the order *-valuation of P,  semicompatible with P.  In 

general, v is not necessarily compatible with P. The key constraint is that for 

any x E PMS(D,  *), {dx -1 : d ~ P and v(d) = v(x)} need not be a Baer ordering 

on (Dr, ~d)- In [Le2, Corollary 4.3], a sufficient condition is given to ensure that  

{dx -1 : d E P and v(d) = v(x)} is a Baer ordering. When that  condition fails, v 

is not compatible with P.  Nevertheless, it is still possible to find a Baer ordering 

compatible with a coarsening of v. 

PROPOSITION 2.1: Let v be a .-valuation semicompatible with a Baer ordering 

P on (D, *). Suppose [D : F ~] is finite and FD is of finite rank, i.e. FD has only 

a finite number of convex subgroups. Then there exist a Baer ordering pi  and 

a coarsening v ~ of v such that P~ is compatible with v t. Furthermore, v ~ can be 

chosen such that vl(D) • v ' (F')  i f r D  # FF,. 

Proof: Let S ( ~ ' D )  : v(S(D,  , ) )  and H = FF, + 2FD. Clearly, H is a subgroup 

of FD and S(FD) is a union of H-cosets in FD. As [D : F'] is finite, IrD/rr,  I 
is also finite. In particular, IS(FD)/FF,] = k is finite. Therefore, there exist 

d l , . . . , d k  e S (D,*)  such that S(FD) = U~_l v(d~) + H. (Note that  we may 

assume dl = 1 and v(di) + H r v(dj) + H whenever i r j .)  For each coset 

"),+2FD E (FF, +2FD)/2FD, we fix an element x.~ E F '  such that v(x.~) E "y+2FD. 

Let X ,  = {xv : ~+2FD e (FF,+2FD)/2FD}, Y, = {d~,... ,dk} and A, -- X , . Y , .  

Clearly, the mapping ~: A~ -~ S(FD)/2FD defined by ~(d) = v(d) + 2FD is 

bijective. 

If Y~ = {1}, then A,  C F'. So, for every d E A,,  ~d = ~. On the other hand, 

we conclude from [Lel, Corollary 2.6] t h a t / 5  is a Baer ordering on (D~, ~,). By 

[Lel, Proposition 3.3], t5 can be lifted to a Baer ordering compatible with v. 

Next, we assume Yv r {1}. For any x e / ) ,  we define 

G(v(x))  = {~ e FD: IV{ < Iv(x) + 2~'lW'r' e FD}. 

Let d E Yv\(1}. As FD is of finite rank, there exists d' E d_~' such that  

Nxedi~, G(v(x))  = G(v(d')).  We claim that v(d') ~ FF, + G(v(d')).  Otherwise, 

there is an element x in ~" such that  v(xd') e G(v(dt)). As d E Y,\~[1}, v(xd') 
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FF,. So v(xd') # O. But by the definition of G(v(xd')), G(v(xd')) c G(v(d')). 

This contradicts our assumption on d'. We have thus proved our claim. 

Note that  when we define Yv, we could replace each d~ by xidi whenever xi E F ' .  

So by the above argument, we may choose xi e F '  such that v(xidi) q~ G(v(x~d~)) 

for each i. Then, after each di is replaced by xidi, we may assume v(d) 

FF, + G(v(d)) for every d E Yv\{1}. 

Let A = UdcY~\{1} G(v(d)). As IY.] is finite, A = G(v(do)) for some d0 E 

Y.\{1}. As argued above, v(do) ~ A + G(v(do)). Thus, v(do) ~ FF, + A. 

Define v ' : / )  ~ FD/A  such that for all x C D, v'(x) = v(x) + A. As v(do) q~ 

F F , + A ,  v'(do) ~ v'(~"). By [Le2, Corollary 4.3], (/)~,, 7~d) admits a Baer ordering 

for all d E Y~. Since for any x C Av, there exists d E Yv such that ~ = ~d, we 

conclude that ( /) . , ,  ~d) admits a Baer ordering for all d E Av. For the valuation 

v', it is clear that  the corresponding Av, can be taken as a subset of Y~,. Thus by 

[Lel, Proposition 3.3] again, we get a Baer ordering compatible with v'. I 

LEMMA 2.2: Suppose v is compatible with a Baer ordering P on (D, *). Then 

for any d E P, v is also compatible with the Baer ordering Pd -1 on (D, *d). Here 

*d is the involution on D such that *d(X) : dx*d -1 for all x E D. 

Proof: By [Lel, Lemma 3.1], Pd -1 is a Baer ordering on (D, *d)- Clearly, v 

is also a .-valuation on (D, *d). Lastly, if x ,y  E Pd -1 and v(x) > v(y), then 

v(xd) > v(yd) and xd, yd E P. Since v is compatible with P, (yd - xd) C P. 

Consequently, y - x C Pd -1. I 

For the rest of this section, we assume * is an involution on F and F '  is the fixed 

field of * in F.  If F # F ,  we fix an element y E F '  such that F = F'[v/~ ] and 

is a skew element in (F,*). Furthermore, we assume T = { ~  xtx~: xt E F}  

is a preordering in F ' .  

LEMMA 2.3: Let Ul,U2,...  ,un be elements o f F '  and L = F[v/-ffi- , . . .  , vfff~]. 

Suppose # is an F'-automorphism of L that extends * and #(x/-U~) = ( - 1 ) ~ x / - ~  

for t = 1, . . .  , n. Let L' be the fixed field of # in L. Then 

T(L) := {y~xtx~t : xt E L} 

'~ 1 is a preordering in L' iff ~ t = l {  , ( -1 )~u t>  is T-anisotropic. Fhrthermore, a 

T-form r over F'  is T(L)-anisotropic over L' iff (~t~l<l,  (-1)a~ut> | r is T- 

anisotropic over F ~. 

Proof: By using an induction argument, it suffices to prove Lemma 2.3 for the 

case n = 1. Note that necessity is obvious in both assertions. Let r = <Vl,... , v~) 

be a T-form over F ' .  Suppose {1, ( -1)~ 'u l> | r is T-anisotropic. 
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If Ul is a square in F,  then L = F,  # = �9 and T(L) = T. As (-1)~1ul  e T, 

our lemma is obvious. Thus, we may assume ~ ~ F.  If xu's and yu's are in F 

and 
8 

0 = + + 

t = l  l 

then 0 = ~-~=: Y~.l(xtlx~l + yuy~l(--1)~:u:)vt. Therefore, (1, ( -1)~:Ul)  | r is 

T-isotropic. This is a contradiction. 

By putting r = (1), the calculation above shows that  

T(L) := { E  xtx#t : xt E L} 

is a preordering in L' whenever (1, ( - 1 ) ~ u : )  is T-anisotropic. Moreover, when 

T(L) is a preordering, the same calculation shows that  r is T(L)-anisotropic. 
| 

LEMMA 2.4: Let L be as de/~ned in Lemma 2.3. [L: F] = 2 ~ i f~) t~  1 (1, ( -  1) ~ ut} 

is T-anisotropic for any ~ : , . . .  , f~  in {0, 1}. 

Proof: Suppose n = 1. If L = F[x/-~ ] = F,  then ul e F 2 n F'. So, Ul E (F ' )  2 

or Ul E y(F ' )  ~. Note that u~ E y(F ' )  2 is possible only when F ~ F ' .  In the 

former case, (I, - u : )  is T-isotropic. In the latter case, (1, u:) is T-isotropic. This 

contradicts our assumption that (1, -i-u1} are T-anisotropic. Hence, [L : F] = 2. 

For n > 1, we let K := F [Vz~ , . . .  , uv/-ff~_l ] and # be an automorphism of g 

that extends * and fixes every v / ~  for t = 1 , . . .  , n -  1. By the induction assump- 

tion, [ g :  F] = 2 n-1. By Lemma 2.3, T(K) := { ~  xtx#t: x~ e K} is a preorder- 
n - - 1  ing. As (~t=:  (1, ut) | (1, :t:u~) is T-anisotropic, (1, :t:u~) are T(K)-anisotropic 

by Lemma 2.3. By using the argument for n = 1, we see that  [ K ( x / ~  ) : K] = 2. 

Hence [L : F] = 2 n. | 

3. Tensor product of quaternion algebras 

Let D be a tensor product of quaternion algebras and �9 be an involution on D. 

Our first goal is to define a form r ,)  such that (D, . )  admits a Baer ordering 

if r  *) is anisotropic. Unfortunately, such a form does not always exist when 

�9 is of the second kind. 

DeIinition 3.1: Let D be a tensor product of quaternion algebras over a field 

F.  We say an involution �9 is 'nice' if * is an F/F~-involution and there exist 

al,a2,. . .  ,an, hi ,b2, . . .  ,bn E F I such that 
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In that  case, we define r  *) = (~t~=l (1, at, bt,-atbt).  

Note that  in Definition 3.1, it is possible that  F = F p, i.e. * is of the first kind. 

Clearly, * is 'nice' if * is of the first kind. When D is a quaternion algebra, we 

conclude from IS, Theorem 11.2] that  any involution of the second kind is also 

'nice'. However, we do not know if every involution of the second kind is 'nice' 

when D is not a quaternion algebra. In general, if * is an F/FP-involution and 

D is a tensor product of quaternion algebras over F,  D may not be expressible 

as a tensor product of ,-closed quaternion algebras. For an example, see [CW, 

Section 4]. Nevertheless, our assumption is weaker than the condition that  D is 

expressible as a tensor product of *-closed quaternion algebras. 

As suggested in the case of a standard involution on a quaternion algebra, 

we should view r *) as a form over a preordering. From now on, we set 

T = { E x i x * :  xi �9 F}. 

LEMMA 3.2: Suppose D is a quaternion algebra and T is a preordering on F ~. 

Then as a T-form over F I, r  *) is uniquely determined if* is of the first kind. 

Proof: Suppose 

o 

It follows from ILl, Proposition 2.5] that  (1, a,b,-ab) and (1, a', b',-a'b') are 

isometric as quadratic forms over F.  Therefore, they are also T-isometric. | 

Note that  in general, r  *) depends very much on the choice of at's and bt's 
when * is of the second kind. So in defining r  .) ,  we must first fix the choice 

of at's and bt's. 
From now on, we fix the following notation. Let D be a tensor product of 

quaternion algebras over F and * be a 'nice' involution on D. Therefore, there 

exist al , . . .  ,a,~,bl,. . .  ,b,~ in F ~ such that  

D = |  @F and r *) = ~ ( 1 ,  at, bt, -atbt>. 
t = l  

When * is of the second kind, we fix an element y E F' such that  F = F'[x/~ ] 

and v ~  is skew. For each t = 1 , . . . ,  n, we define Dt = ( ~ - ~ ) .  We let i t , j t ,  kt 

be elements in Dt such that  

i 2 = a t ,  j2t =bt  and k t = i t j t = - j t i t .  

Clearly, Dt = F + Fit + Fit  + Fkt. As defined earlier, T -- {~'~xtx~lxt E F}.  
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When we write D as a tensor product of quaternion algebras, it is possible to 

replace each at by yat and/or bt by ybt. The next result shows that those changes 

do not concern us in determining the anisotropy of the form r ,). 

LEMMA 3.3: If  at is replaced by yat and~or bt is replaced by ybt, then r .)  

is off  by a scalar mult iple  of an element in F ' .  

Proo~ For convenience, we will drop the subscripts. It suffices to show that  

there exist x l , x 2 , x a  in F ~ such that 

x l -  (1, ay, b,-aby> ~T x2" (1, a, by,-aby> ~T X3" <1, ay, by,-ab> 

~T (1, a, b, -ab). 

As - y  �9 T, (1, ay, b, -aby> ~ T  <1, --a, b, ab>, (1, a, by, -aby> ~--T (1, a, - b ,  ab> and 

(1,ay,  by,-ab> ~-T (1 , - -a , -b , -ab>.  Clearly, we can take xl = b, x2 = a and 

X 3 : -ab .  | 

We are now ready to state our main results. 

THEOREM 3.4: Let  D and * be as assumed above�9 I f  T is a preordering in F '  

and r *) is T-anisotropic,  then (D, *) is a Baer ordered *-field. 

THEOREM 3.5: Suppose  the involution * is not  symplectic.  Then  T is a pre- 

ordering in F and r *) is T-anisotropic iff (D, *) is a Baer ordered *-field. 

In proving Theorem 3.4 and Theorem 3.5, we often need to deal with valuations 

on F ' .  It is desirable that for a valuation v: _~' --+ FF,, v(y) ,  v(at)'s and v(bt)'s 

satisfy certain conditions. 

LEMMA 3.6: Let  v be a valuation compatible  with T on F ' .  Then  v ex tends  

uniquely  to F when F ~ ~ F.  Furthermore,  i f  we define ~: F '  --+ F F, /2F  F, such 

that for all x E [~, fJ(x) = v(x)  + 2FF, , then there exist nonnegative integers r, s 

and elements a~ , . i i r F' �9 , an, b ] , . . .  , b n in such that 

(i) D = | 1 7 4  , 

~ n  I1 a' b' - a  '~t\ for some x E F ~, (ii) r = x .  v.yt__l\ , t ,  t '  t v t !  

(iii) 0(y) = 0 or ~(y) @ (~(a~),0(b~),... ,~(a~),~(b~)> i f F  r F ' ,  

(iv) v(a~) = 0 for t = 1 , . . .  , r  + s i f r  + s >_ 1, 

(v) v(btt) = 0 f o r t  = 1 , . . .  , r  i f r  >_ 1, 

(vi) 0(b~+l),.. .  ,0(b~) are 7_a-independent in rF/rr i f  r + 1 <_ n, 
- -  ! - -  I - -  ! (vii) v(a~+s+l ) , . . .  , v ( a n ) , v ( b r + l ) , . . .  ,f~(b~) are 7-a-independent in r ~ / r r  i f  

r + s + l < _ n .  
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Proof." Suppose F # F ' .  Clearly, v extends uniquely to F if v(y)  ~ 2FF,. If  

v(y)  E 2FF,, we may assume v(y)  = O. However, ~ is not  a square in F ---/as T is 

compat ible  with v. Hence, v extends uniquely to F .  

Let H = (~ (a l ) ,~ (b l ) , . . .  ,~(an),9(bn)) .  If F ~ U ,  ~(y) r 0 and ~(y) e H,  

then there exists a subgroup H '  of index 2 in H such that  H = H '  + (9(y)). For 

each t, we set ut = at if V(at) E H '  and set ut = yat  otherwise. Similarly, we set 

wt = bt if 9(bt) E H ~ and wt = ybt otherwise. Clearly, 

D =  |  " " " @F \ F ] '  

(9(ul) ,  9 ( w x ) , . . . ,  9(un), V(w,~)) = H '  and H '  does not contain 9(y). By Defini- 

t ion 3.1 and L e m m a  3.3, the new form associated becomes (~ t_ l  (1, ut,  wt ,  - u t w t )  
n 

which is T-isometric  to x .  ~ t = l ( 1 ,  at,  b t , - a t b t )  for a suitable element x E F ~. 

Wi thou t  loss of generality, we may assume ut = at and wt = bt for all t. In 

part icular,  we may assume V(y) = 0 or 9(y) ~ H.  

For convenience, we identify it with 1 | 1 . - -  | it | 1 . - .  | 1, j t  with 1 | 1 �9 .. | 

j t  | 1 - . . |  1 and kt with 1 |  1 . . . |  | 1 . . . |  1. Thus, we may assume i t , j t ,  kt 
n 

are elements in D for t = 1 , . . .  ,n .  Let  B = {1-It=zat  : a t  = 1 , i t , j t  or k t} .  

Consider  now the Fr-algebra  

k---U- ] | . . . .  oF, 

�9 1 ' 1  I We claim tha t  there exist a subset {h, 3t, kt : t -- 1 , . . .  , n} of D ~ and nonnegative 
t .v2 t .t2 integers r, s such tha t  a t = ~ t ,  bt = 3 t are elements in F ~ for t -- 1 , . . .  , n; and 

the following conditions hold: 

(a) {a_f" : a e B} = {(1--I~-1 a t ) F '  : a t  = 1, h,at" "' or k't}, 
�9 ! . !  - !  . !  

(b) k~ = h3t = -3dt for t = 1 , . . .  ,n,  

(c) "' "' "' " "' " "~ "' "' "' "' "~ t '  zth,  = z v h ,  h3t,  = 3t, zt, and 3t3t, = 3t,3t if 1 _<: ~ t _< n, 
(d) v(a~) -----0 for t--- 1 , . . .  , r + s  i f r + s  > 1, 

(e) v(b~) = 0 for t = 1 , . . .  , r  if r _> 1, 

(f) O(b~+~),... ,O(b~) are 7_,2-independent in if r + 1 < n, 

v(a~), v(b~+l) , . . .  , O(b~) are 7_e-independent in r ~ , / 2 r ~ ,  if ( g )  , _ , 

r + s + l < _ n .  

Before we prove our claim, we need to prove some preliminary results. Let 

.4 = { x F  t : x E B}. Clearly, A can be regarded as a multiplicative elementary 

2-abelian group. As in [TW], we define a nondegenerate map BA: .4 • A --~ {•  

such tha t  

= /~' for every z l F ' ,  z2/~' E A. B.A (Zl /~ ' ,  z2Ft)ZlZ2F' Z2Zl 



Vol. 116, 2000 FORMS AND BAER ORDERED .-FIELDS 9 

For any subgroup  ~ in A, we define 

6 • = {zF ' :  B.a(zfi', z ' # ' )  = 1 for all z ' /~ '  �9 ~}. 

Let  A be  the  divisible closure of FF,.  Note tha t  {it[~',jtF ' : t = 1 , 2 , . . .  ,n}  

is a basis  for the  e lementa ry  2-abel• group A. Therefore,  there exists a group 

h o m o m o r p h i s m  w: A --+ A / F F ,  such tha t  for t = 1, 2 , . . .  , n, 

w(i tF ' ) -  v(at) - - - 2  + FF, and w(jtF') -- ---~-- + F F , . V ( b t )  

We denote  ker(w) by K:. Clearly, K: • = {zF' �9 A: zal ~' = azF' for all a-~' �9 ~} .  

There  are three  possible cases�9 

CASE (i): K: = {F '} .  In this case, we se t i~  = i t  a n d j ~  = j r  for a l l t .  I t  is 

s t ra ight forward  to check tha t  r = s = 0 and (a)-(g)  hold�9 

CASE (ii): K~ ~ {FI} and /(: = /(:fqK: • Let  i~F '  �9 K:. In /C ,  there exists a 

subgroup  K7 of index 2 in/(:  such tha t  {/~1, i~lF,}. ~ / =  tg. As BA is nondegen- 

crate,  K7 1 ~ K: • Let  Jt �9 K T l \  K:• and B =  ", -i "~ .i "~ . i - ,  ", �9 "' {F  ,Z lF  , j 1 F  , h j 1 F  }. Clearly, 

B fq B • = {/~'}, .4 = B .  B • and w(B) + w(B 1) = w(A).  Moreover,  as K:' C B • 

and ]w(A)] = IBm. ~ ,  w(B) ~_ w(B• Hence, w(B)fq w(B • = {FF,}. 

CASE (iii): K:\()U N/~•  r 0. Let  i t � 9 1 7 7  As i~/~' ~ /C  N ~ •  there exists 

j~F' �9 1C such tha t  "' .i .~ .i ZlJ 1 :--31'$1.  Let 

�9 I � 9  " ! - !  �9 I � 9  * I  �9 I B = { F  , h F  , j 1 F  , h r  }. 

Clearly, w(13) = {FF,} and B N B x = {1}. As BA is nondegenerate ,  .4 = B .  B • 

We now prove our  claim by induction�9 Suppose n = 1. Clearly, {i'1, j~, i~lj~} 
defined earlier satisfy (a)- (g) .  In fact, r = s = 0 for Case (i); r = 0 and s = 1 

for Case (ii); and r -- 1, s = 0 for Case (iii). 

Next ,  we assume n > 1. As before, we s imply take r = s = 0 when K: -- {FI}.  

If  we are in Case (ii) or Case (iii), we let B be as defined in the previous a rgument .  

By [TW, L e m m a  2.5], we see t ha t  

( 'a~, b~ 
D I _ \ F' ] | FI[B• 

We can  thus  app ly  induct ion on FI[13 • to complete  the  proof  of  our  claim�9 Note  

t ha t  r = 0 and  s > 1 if Case (ii) happens;  and r > 1 if Case (iii) happens�9 
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Lastly, we show (i)-(vii) are satisfied. By (a), we see that  

D = | " ' "  |  and 

Therefore, (i) and (iii) hold. Observe that  

and 

Isr.  J. M a t h .  

H - ! - ! - I = (v(al) ,  V(bl) , . . .  ,v (a~) ,  O(b~)). 

n 

@ ( 1 , a t , b t , - a t b t )  = @ ( 1 ,  h,'2 3t,'2 kt2 ) 
t = l  t----1 

Tt n 

@ < 1 , ' 2  , 2  , , , ,  
z t ,  3 t ,  k'~) = (~)(1,  at, b t , -a tb t ) .  

t = l  t----1 

Thus  (ii) follows from (a). (iv)-(v) follow easily from (d) and (e). Lastly, observe 

that  FT = 2FF = 2FF, U (v(y) + 2FF,). Hence, (vi) and (vii) follow from (f), (g) 

and (iii). | 

Definition 3.7: Suppose Ct is a T form for t = 1, 2 , . . .  , n. We define 

k t 
| = (1) whenever k > k'. 

Recall tha t  if v is a valuation compatible  with a preordering T on F t, Tv := 

T .  (1 + My) is a preordering fully compatible  with v on F t. For more details, we 

refer the reader to [L2, Chapter  3]. 

LEMMA 3.8: Let  v be a valuation compatible with T on F' .  Suppose at 's  and 

bt's sat isfy the conditions (iii)-(vii) in Lemma 3.6. 

( 1 )  (~)tn=l (1, at, bt, - a t b t  ) is TV-anisotropic iff  for any OLr+ l , . . . , Olr + s E {0, 1}, 

@ ( 1 ,  at, bt , -atbt> | @ (1, ( - 1 ) ~ ' a t )  is T-anisotropic. 
t =  1 t = r +  1 

(2) Suppose  r  , )  = ~ t ~ l  (1, at, bt, -a tb t )  is T-anisotropic. For t = 1 , . . .  , n, 

Dt  is a division ring and v has an extension to Dr. (Recall that  Dt = I ~ - ~ )  .) 

Furthermore,  

F 

Proo~ 

i f  I < t < r, 

i f r +  1 < t < r + s ,  

i f r + s +  1 < t < n. 

(1) By condition (iii), we see that  

V ( a r + s + l ) , .  . . , ~ ) ( a n ) ,  v ( b r + l ) ,  . . . , ~ ) ( b n )  
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are Z~-independent in ~F,/FT. So (1) follows from [L2, Theorem 4.6]. 

(2) We first show that Dt is a division ring. Let D~ be the F'-algebra (at ,b~ k F ' ]  
in Dr. Since (1 ,a t ,b t , -a tb t )  is T-anisotropic, (at, bt, -atbt) is anisotropic as 

a quadratic form over F ' .  Hence by [L1, Theorem 2.7], D~ is a division ring. 

We are done if F ---- F ~. Otherwise, we may view Dt as the quotient ring 

D~[x]/(x 2 -y)D~[x] where x is an indeterminate that commutes with every 

element in D~. Obviously, (x 2 - y)D~[x] is a two-sided ideal. As stated in 

[Co, p. 532], D~[x]/(x 2 - y)D~[x] is a division ring if it does not have any 

zero divisor. By another result stated in [Co, p. 534], D't[z]/(x 2 -y)D~[x] 
has no zero divisor if the equation u 2 = y has no root in D~. Therefore, 

Dt is a division ring if the equation u 2 = y has no root in D~. Suppose 

O~1,Of2,O13,Ot4 E F t and (al  + a2it + aajt + aakt) 2 -- y. Then it is easy to 

see that a 2 + a~at + a2bt - c~2atbt = y. As - y  e T, (1, at, bt,-atbt) is then 

T-isotropic. This is impossible. Therefore, Dt is a division ring. 

Suppose r + s + l  < t < n. Then v(at)+2Ff and v(bt)+2Ff are 7_a-independent 

in FF/2FF. By [TW, Proposition 3.5], v extends to a *-valuation totally ramified 

over F.  

If r + 1 < t < r + s, then v(at) -- 0 and v(bt) ~ 2FF. By (1), (1, •  are T- 

anisotropic. Since T -- {~-~ xtx~t : xt C/?}, we can apply Lemma 2.4 to conclude 

that at ~ ~,2. By an argument used in the proof of [CW, Theorem 3.9], we see 

that v extends to a valuation on Dr. Fhrthermore, the residue *-field is -f'[~t]. 

If 1 < t < r, then v(at )  = v(bt)  = 0. As  (1,at,bt,-atbt) is T'-anisotropic, 

(1,~t,t)t,-~j)t) is T-anisotropir By an earlier argument, wesee that ( ~ ) i s a  

division ring. Apply an argument used in the proof of [CW, Theorem 3.8]; we see 

that  v extends to a valuation totally unramified over F on Dt and Dt = 
| 

Proof of Theorem 3.4: Suppose T is a preordering and 

n 

r *) = (~)(1, at, bt, -atbt) 
t= l  

is T-anisotropic. Apply [L2, Isotropy Principle 18.2] to the form 

n 

~ ) ( 1 ,  at, bt, -atbt); 
t= l  

we get a valuation v: fi" -4 FF, compatible with T such that 

(I) either v(at) + FT r  or v(bt) + FT • FT for some t = 1 , . . .  , n. 
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(II) (~ t~ l  (1, at, bt, -atbt) is TV-anisotropic. 

By Lemma 3.6, we may assume v is defined on F even when F # F ' .  Since v is 

compatible  with T, T = { ~  xtx~ : xt E F} is a preordering on g --}. This fact will 

be used repeatedly  in the subsequent argument.  Furthermore,  in view of Lemma  

3.6, we may assume at's and bt's satisfy the conditions (iii)-(vii) there. 

Our  s t ra tegy is to prove by induction on n tha t  

(i) D is a division ring and v extends to a valuation ~ on D. 

(ii) (D, . )  admits  a Baer ordering. 

By L e m m a  3.6 and [CW, Lemma 1.8], the extension ~ obtained in (i) is in fact 

a . -va luat ion  on D. By [Lel, Proposi t ion 3.3], it suffices to show (i) and tha t  

(/}~, *d) is a Baer  ordered *-field for every d E S(D, *). 

Suppose n = 1. By Lemma 3.8 (2), D is a division ring and v extends to a 

valuation ~ on D. Recall tha t  r, s are as defined in Lemma 3.6. By condit ion 

(I), we see tha t  r = 0. When  s = 0, the residue *-field is (F',~). As T is a 

preordering,  (_P, ;)  admits  a Baer ordering. For all d C S(D, *), id = ; ,  so 

(F,  ~d) admits  a Baer ordering. In case s = 1, the residue ,-field is (F'[il], ~). 

For any d �9 S(D,*),  7~dlp = *lP- As T = {Y]~xtx~ : xt �9 F}  and ( 1 , ~ 1 )  

are T-anisotropic,  we conclude from Lemma 2.3 tha t  (/~[~1], ~'d) admits  a Baer  

ordering. 

Suppose n > 1. By Lemma 3.8 (2) and [M, Theorem 1], we see tha t  D is a 

division ring and v has a unique extension to D if 

(9) E : =  ( ~ )  | 1 7 4  | P [~+l ]  | �9 �9 - @,~ -P[i~+~] 

is a division ring. Here, it is unders tood that  

-P[ir+l] |  | -P[~+~] = P if s = 0 

and 

(#) | 1 7 4  =_P i f r  = 0. 

By Lem ma  3.8 (1) and Lemma 2.3, we see tha t  ~ ' [~r+l , . . .  , i t+s] is a field of 

degree 2 s over/~.  In particular,  this shows that  ~'[i~+1] |  |  F[i~+8] can be 

identified as the field F ' [~r+l , . . .  ,~v+s] which we denote  by K.  Clearly, we may 

view 

(9) E = | "'" | �9 
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For any involution # on g with #1$" = Fib', we set T ( ~ )  = { ~ x ~ x # :  x~ e g} .  
By Lemma 3.8 (1) and Lemma 2.3, T ( # )  is a preordering and 

r 

t = l  

is T(#)-anisotropic .  

By (I), we see that  r < n. So if we set # = ~, then we can apply an induction 

assumption to see that  (E, ~) is a Baer ordered ,-field. (Clearly, ~ is still 'nice' 

on E.) This proves that  v extends to a valuation ~ on D. Furthermore, for any 

d E S(D, *), ~d[b" = ~[P. So if we set # = ~d, we may also apply induction to 

conclude that  (E, ~d) is a Baer ordered ,-field. By our earlier remark, we see 

that  D is a Baer ordered *-field. | 

To prove Theorem 3.5, we assume that  P is a Baer ordering on (D, *). First, 

we claim that  we may assume all i t 's  and j t ' s  are symmetric.  For t = 1 , . . .  , n, 

let # t  be the F/F'-involution on ( ~ )  that  fixes it and jr. Note that  such w e  

involution exists because at,bt E F' for t = 1 , . . .  ,n. As * is not symplectic and 

�9 IF = (#1 | # 2 " "  | #n) lF ,  * is similar to #1 | # ~ " '  | #~ .  By Lemma 2.2, 

(D, , )  admits a Baer ordering iff (D, # )  admits a Baer ordering. Hence, we may 

assume * = # .  This proves our claim. 

As defined in [Lel], there is a finest valuation vp, the order *-valuation of P,  

that  is semicompatible with P. Suppose vp([3) = vp(F'). Then we may assume 

V p ( i t )  ---- V p ( j t )  = 0 for all t. Hence, the residue division ring is a tensor product  

of quaternion algebras over ~'. By [Lel, Corollary 2.11], the residud division 

ring must then be a quaternion algebra whereas the induced involution must 

be the s tandard involution. This is impossible as i t , j r  are symmetric  elements 

which are not central in the residue division ring. Therefore, we conclude that  

 p(b) # vp(F'). 
Unfortunately, vp may not be compatible with P. By Proposition 2.1, there 

exists a coarsening v : / )  -+ FD of vp such that  FD ~ FF, and v is compatible 

with a Baer ordering P '  when F is finitely generated over Q. Thus, we first 

assume F is finitely generated over Q. As before, we may also assume conditions 

(iii)-(vii) of Lemma 3.6 hold. Let r, s be as defined in Lemma 3.6. To prove 

Theorem 3.5, it suffices to show that  {~tn=l(1, at, bt,-atbt) is TV-anisotropic. In 

view of Lemma 3.8 (1), we only need to show that  for any a t + l , . . .  , a t + ,  in 

{0, 1}, 
7" 7"~1- 8 

t = l  ~ = r + l  



14 K.H.  LEUNG [st. J. Math. 

is T-anisotropic. As before, it is understood that {~t~1<1, at, bt, -atbt) = <1) 
~ r + s  when r = 0 and <ye=~+l(1, ( -1 )~ 'a t )  = (1) when s = 0. 

Recall that  in the proof of Theorem 3.4, we have shown that 

D v  = @ g  "'"  ( ~ K  

where K = F[~r§  , i t§ Again, it is understood that K = _P if s = 0 and 

D.  = K if r = 0. 

LEMMA 3.9: Let r and r be as detined above. 

(i) I f  r = n, * is of the second kind, F = F t and ~ is of the/irst kind. 
t~A r+s  11 (ii) If  r ~ u, then ~yt=~+l\~, (-1)~*at) is T-anisotropic. In particular, r is 

T-anisotropic i f  r = O. 

Proof." Since [D : F] = [D, : K], we conclude that K = F' and FD = FF. 

However, as FD r FF,, * must be of the second kind and K = P = F -7.  Hence, 

is of the first kind. This proves (i). 

Observe that  for t = r § 1 , . . .  , r  + s, there exists dt E {1,jr} such that  

dtit = (-1)~"itdt. Set d = d~+l. . -  d~+, if s r 0. Otherwise, set d = 1. Clearly, 

d E S(D,*) .  In D, ,  ~d fixes zt and j t  for t = 1 , . . .  ,r .  Therefore, ~d is either 

orthogonal or is of the second kind on ])v- As v is compatible with P', (D,,  ~d) ad- 

mits a Baer ordering. In particular, T(d) = {~-~ xax*a: xa E K }  is a preordering. 
~ r + s  /1 By Lemma 2.3, ~yt=r+l~ , ( -1 )  ~ a t )  is T-anisotropic as T = { ~ , x t x ~ :  xt �9 ~'}. 

| 

Proof of Theorem 3.5: We first assume F is finitely generated over Q. This 

allows us to use the results we have just proved. We shall prove Theorem 3.5 by 

induction. Suppose n = 1. If r = 0, then by Lemma 3.9 (ii), we see that  r is 

T-anisotropic. So r  *) is T-anisotropic. Note that  r = 0 w h e n ,  is orthogonal 

as by assumption of v, FD ~ rE-  If r = 1, we conclude from Lemma 3.9 (i) that  

/ ) .  = ( ~ )  and ~is orthogonal. Since P-~ is a Baer ordering on ( / ) . ,  ~) and~ is 

orthogonal, our previous argument shows that (1, al ,  b l , - a l b l )  is Tl-anisotropic 

where T1 = { ~  x 2 : xa E ~ } .  By Lemma 3.6 (iii), we see that T1 = T. So 

(1, hi,/~1, - a l b l )  is T-anisotropic and hence r *) is T-anisotropic. This proves 

Theorem 3.5 for n = 1. 

Now assume n > 1. By Lemma 3.9 (ii) again, we may assume 0 < r <_ n. Let 

d and T(d) be as defined in the proof of Lemma 3.9. Recall that ~4 is 'nice' and 

(b~, ~a) admits a Baer ordering. If r < n, we may apply an induction argument 
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to conclude that  
r 

( ~ ( 1 ,  ~t, [h, -St[~t) 
t = l  

is T(d)-anisotropic. By Lemma 2.3, r is then T-anisotropic. So again, r  *) 

is T-anisotropic. Since FD ~ FF, r < n when * is orthogonal. Hence, r  , )  

is T-anisotropic when * is orthogonal. Finally, we consider the case r -- n. As 

before, we see that  ~ must be orthogonal. By using a similar argument as in 

case n ---- 1, we conclude that  r = r  ~,) is T-anisotropic. So r  , )  is then 

T-anisotropic. 

Lastly, we remove the condition that F is finitely generated over Q. Suppose 

r  , )  = (Zl , . . .  , z l / i s  T-isotropic. Then 

= o 

for some u ~ ' s  in F.  Let L be the field obtained by adjoining ai's, bi's, u ~ ' s  a~ld 

u ~  s to Q. Let 

Clearly, E is *-closed and P A E is a Baer ordering on (E, *IE)- As L is finitely 

generated over Q, our previous argument shows that  r  *) = ( z l , . . .  , zl) is T"- 
anisotropic where T" := { ~  x.rx~, : x.~ E L}. This contradicts our assumption 

�9 Z that  ~ ( ~  u,~u,~)  a = O. Hence we conclude that r  is T-anisotropic. 
| 

Note that  in the proof of Theorem 3.5, if r + s r n, r  *) is T-anisotropic 

even when �9 is symplectic. This follows easily by considering the involution 

#1 | #2  | "'" #,~-1 | *n where % is the standard involution. However, the 

following example shows that  r  *) need not be T-anisotropic in general if * is 

symplectic. 

Example: Let F = Q(x, y, z) where x, y, z are indeterminates. Obviously, F is 

formally real and T := {~] t, 2. : ti E F}  is a preordering in F.  Let v: P -4 Z x Z 

be the real valuation such that  v(x) = (0, 0), v(y) = (1, 0) and v(z) = (0,1). Set 

al = - ( 1  + x), bl = y, a2 = x and b2 = z. With respect to v, it is easy to see 

that  (1, • and (1, • are T-anisotropie. Therefore, 

( 1 , a l , b l , - a l b l )  and (1,a2,b2,-a262> 

are TV-anisotropic. Thus, f o r t  = 1, 2, Dt -- ( ~ - ~ )  is a quaternion algebra. By 

Lemma 3.8, we see that  v can be extended to D1 and D2. Moreover, the residue 
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fields are respectively Q[v/~] and Q [ x / ~ .  As Q[v~-] | Q [ v ~  is a field, we can 

apply Morandi's result to conclude that D := D1 | D2 is a division ring and v 

extends to a valuation on D. For convenience, we also denote the extension by 

V. 

Suppose * is the symptectic involution such that  i l , j l  are skew and i2,j2 are 

symmetric. As * is of the first kind, v is a ,-valuation. Let Y. be as defined in 

the proof of Proposition 2.1. It is not difficult to see that ]Iv can be taken to be 

{1,j2, i lk2, j lk2}.  To see that (D,*) admits a Baer ordering compatible with v, 

it suffices to show (Dr, ~d) admits a Baer ordering for every d C Yr. 

By our earlier calculation, D.  = Q[~1,~2]- As / ) ,  is now a field, (Dr, ~'d) 
admits a Baer ordering if {~z ,~z~":  z ,  � 9  is a preordering. By Lemma 2.3, 

it suffices to check if the forms 

(1, (1 + ~)) | (1, :t:5:} and (1, :t:(1 + ~)} | (1, -~} 

are T-anisotropic. (Note that the first two forms correspond to d = 1,j2 and 

the second two forms correspond to d = ilk2 and ilk2.) To prove that, we 

need only to show that there exist three orderings P1, P2, P3 on Q(~) such that  

{-~ ,  (1 +~)}  C P1, { - ~ , - ( 1 + ~ ) }  C P2 and {~,(1+~)} C P3. The existence of 

P3 is obvious. For the construction of P1 and P2, we choose real numbers tl,  t2 

which are transcendental over Q and t2 < - 1  < tl < 0. Define isomorphism 

f~: Q(~) -~ R such that f~(~) = t~ for i = 1,2. It is then clear that  P1 = 

f ~ l ( { x  E R[x >_ 0}) and P2 = f21({x �9 R[x > 0}) are the required orderings. 

Note that  (1, al,  a2) is T-isotropic. Therefore, 

(1, al, 51, -dab1) | (1, a2, 52, -a252) 

is also T-isotropic. This shows that  Theorem 3.5 is no longer true if �9 is sym- 

plectic. However, it is not difficult to see that in our example, 

(1, al,  bl, - a lb l ) |  -a2,  -b2, a2b2) and (1, - a l ,  -b l ,  albl)|  a2, b2, -a2b~) 

are T'-anisotropic. In fact, by modifying the proof of Theorem 3.5, it is possible 

to prove the following: 

THEOREM 3.10: Let D be as defined before. Suppose n > i and * is a symplectic 

involution. Then (D, *) admits a Baer ordering iff T is a preordering in F and 

there exists a valuation v compatible with T on F' such that for t = 1 , . . . ,  n, 

(~zr (1, al, bl, -aLbz) | (1, -a t ,  -bt ,  atbt) is T'-anisotropic. 

In concluding this section, we state an easy corollary of Theorem 3.5 on SAP 

fields. For a quadratic form characterization of SAP fields, we refer the reader 

to [P, Theorem 9.1]. 
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COROLLARY 3.11: Suppose F is a SAP field and * is an involution of the first 

kind. Then (D, *) does not admit a Baer ordering unless n = 1 and �9 is the 

standard involution. 

4. A poss ib le  c o u n t e r  e x a m p l e  

As we have mentioned before, one of our motivations in our study of Baer ordered 

quaternion algebras is to determine if every formally real .-field admits a Baer 

orderings. Let 

In D, we define * to be the orthogonal involution that  fixes i, j .  It can be shown 

that  (D, *) is formally real iff 

ab(x2 a + y2b) ~s ab + tl -~- t2(x2 a + y2b) and 0 ~ ab + tl  + t2(x2  a -]- y2b) 

for any x , y  E F and tl , t2 E T. Hence, (D, . )  is formally real iff 

ab r tl  + (t2x 2 + y2b2)a + (t2y 2 + x2a2)b 

and 
0 ~ tl + (t2x 2 + y2b2)a + (t2y 2 + x2a2)b. 

We conjecture that  the above condition is not equivalent to the condition that  

(1, a, b-ab) is T-anisotropic. To construct a possible counter example, we propose 

the following. 

A POSSIBLE COUNTER EXAMPLE. Let Xl , . . .  ,xr,  Y l , . . .  , y s , z l , . . .  ,zt ,  a,b be 

indeterminates. Let K = Q(x l , . . .  ,xr,  y l , . . - , y s ,  z l , . . .  ,z t ,a,b) and F -- 

K[x/u] where 

= a b -  (x~ + - - -  + x ~ ) -  a(y~ + - . -  + y~) - b(z~ + -  + z~). 

Let D -- (~pb) a n d *  be the orthogonal involution that fixes i, j .  We first show 

that  D' is a division ring. 
Let T ( K )  = { ~  a2 : at e g } .  Observe that  (1, a, b,-ab} is T(g)-anisotropic 

as there exists a real valuation v : /~  -4 Z• Z such that  v(a) = (1, 0), v(b) = (0, 1) 

and v(x~) = 0 for all i. By Lemma 3.8, we see that  ( ~ )  is a division ring. As 

in the proof of Lemma 3.8, D is a division ring if we show that  z 2 r u for any 

( ~ ) .  Suppose a l ,  a2, an, a t e  K and (al + a2i--b a3j q - a 4 k ) 2 - u .  Then z E 

~ + ~ a  + ~ b -  ~ a b  = ~ b -  (~ +... + ~) - ~(y~ + . . .  + y~) - b(Zl ~ + - - +  z~). 
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It follows that  (1, a, b, -ab)  is then T(K)-isotropic. This is impossible. Therefore, 

D is a division ring. 

Note that  F is formally real and T = {)-~x~ : xt C F}  is a preordering. 

Clearly, (1, a, b, -ab)  is T-isotropic even though (1, a, b, -ab)  is T(K)-anisotropic. 

By Theorem 3.4, (D, *) does not admit a Baer ordering. 

Clearly, we may order K such that a, b are positive and 

X l , . . .  ,Xr~Y l , . . .  , y s , Z l , . . .  ,Zt 

are infinitesimally small compared with any element in Q(a, b). In that  case u 

is also positive. Obviously, this ordering can be extended to F.  In particular, 

(1, a, b) is T-anisotropic. Therefore, (D, *) is formally real if 

a b r  tl  -b (t2x 2 -b y2b2)a + (t2y 2 + x2a2)b 

for any x , y  E F and tl , t2 E T. Apparently, it is different from the condition 

that  (1, a, b , -ab)  is T-isotropic. So it is reasonable to believe (D, *) is a possible 

counter example. Moreover, our example is generic in the sense that if there 

exists a formally real quaternion algebra which does not admit a Baer ordering, 

then our constructed example is one of them. 
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